

(19) 대한민국특허청(KR)

(12) 등록특허공보(B1)

(51) 국제특허분류(Int. Cl.)

F24F 11/00 (2018.01) F24F 11/65 (2018.01) F24F 110/70 (2018.01) F24F 120/10 (2018.01) G06V 40/10 (2022.01)

(52) CPC특허분류 **F24F 11/0001** (2018.01)

(21) 출원번호 **10-2022-0085456**

F24F 11/65 (2023.05)

(22) 출원일자 **2022년07월12일** 심사청구일자 **2022년07월12일**

(56) 선행기술조사문헌 JP5788254 B2* (뒷면에 계속)

전체 청구항 수 : 총 18 항

(45) 공고일자 2024년01월18일

(11) 등록번호 10-2627133

(24) 등록일자 2024년01월16일

(73) 특허권자

연세대학교 산학협력단

서울특별시 서대문구 연세로 50 (신촌동, 연세대 학교)

(72) 발명자

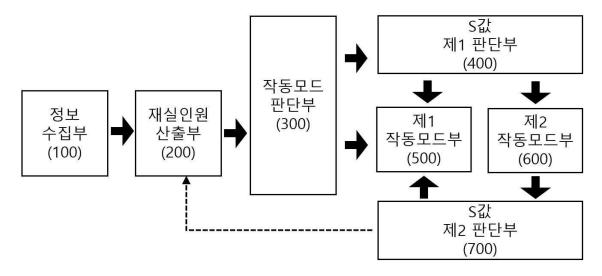
김태연

서울시 서초구 서초중앙로24길 43, 유원아파트 이주상

경기도 고양시 일산동구 일산로 30, 효성 811호 **최하늘**

서울특별시 서대문구 연희로27길 114, 301호

(74) 대리인 **김인철**


심사관: 이재훈

(54) 발명의 명칭 재실인원의 변경을 반영하는 환기 제어시스템 및 환기 제어방법

(57) 요 약

본 발명은 데이터베이스 및 연산기능을 가진 제어서버에 의해 수행되는 환기 제어시스템으로서, 실내 및 실외의 이산화탄소 농도 정보 및 실의 체적 정보를 수집하고, 수집된 정보를 제1 작동모드부(500) 및 제2 작동모드부 (600)로 전송하는 정보 수집부(100); 재실자의 인원수를 검출하는 재실인원 산출부(200); 상기 재실인원 산출부

(뒷면에 계속) 대 표 도 - 도1

(200)에서 검출된 인원수가 영(0)이면 제1 작동모드부(500)를 수행하고, 검출된 인원수가 1인 이상이면 S값 제1 판단부(400)를 거쳐 제2 작동모드부(600)를 수행하는 작동모드 판단부(300); S값이 1000ppm 이하이면, 검출된 인원이 1인 이상이어도 제1 작동모드부(500)를 수행하고, S값이 1000ppm을 초과하면 제2 작동모드부(600)를 수행하는 S값 제1 판단부(400); 작동모드 판단부(300) 또는 S값 제1 판단부(400)를 통해 수행되며, 외부공기 유입회수 및 실내 이산화탄소 추정 농도를 이용하여 시간당 환기회수를 산출하는 제1 작동모드부(500); S값 제1 판단부(400)를 통해 수행되며, 외부공기 유입회수 및 실내 이산화탄소 농도를 이용하여, 재실인원에 따른 시간당 환기 횟수를 산출하는 제2 작동모드부(600); 및 제2 작동모드부(600)가 수행된 후, S값이 850ppm 미만이면 제1 작동모드부(500)를 수행하고, S값이 850ppm 이상이면 재실인원 산출부(200)를 수행하는 S값 제2 판단부(700)를 포함한다.

(52) CPC특허분류

G06V 40/103 (2022.01) F24F 2110/70 (2018.01) F24F 2120/10 (2018.01) G06T 2207/30242 (2013.01) (56) 선행기술조사문헌

KR101204328 B1*
KR101717836 B1*
KR1020170093446 A*
KR1020190066814 A*

*는 심사관에 의하여 인용된 문헌

이 발명을 지원한 국가연구개발사업

과제고유번호 1711137647

과제번호2021R1A4A1032306부처명과학기술정보통신부

과제관리(전문)기관명 한국연구재단

연구사업명 집단연구지원(R&D)

연구과제명 근현대 건축문화재 보존/활용 리트로핏 기술 연구실

기 여 율 1/1

과제수행기관명 연세대학교

연구기간 2021.06.01 ~ 2022.02.28

공지예외적용 : 있음

명세서

청구범위

청구항 1

데이터베이스 및 연산기능을 가진 제어서버에 의해 수행되는 환기 제어시스템으로서,

실내 및 실외의 이산화탄소 농도 정보 및 실의 체적 정보를 수집하고, 수집된 정보를 제1 작동모드부 및 제2 작동모드부로 전송하는 정보 수집부; 재실자의 인원수를 검출하는 재실인원 산출부; 상기 재실인원 산출부에서 검출된 인원수가 영(0)이면 제1 작동모드부를 수행하고, 검출된 인원수가 1인 이상이면 S값 제1 판단부를 거쳐 제2 작동모드부를 수행하는 작동모드 판단부; S값이 1000ppm 이하이면, 검출된 인원이 1인 이상이어도 제1 작동모드부를 수행하고, S값이 1000ppm을 초과하면 제2 작동모드부를 수행하는 S값 제1 판단부; 작동모드 판단부 또는 S값 제1 판단부를 통해 수행되며, 외부공기 유입회수 및 실내 이산화탄소 추정 농도를 이용하여 시간당 환기회수를 산출하는 제1 작동모드부; S값 제1 판단부를 통해 수행되며, 외부공기 유입회수 및 실내 이산화탄소 농도를 이용하여, 재실인원에 따른 시간당 환기횟수를 산출하는 제2 작동모드부; 및 제2 작동모드부가 수행된 후, S값이 850ppm 미만이면 제1 작동모드부를 수행하고, S값이 850ppm 이상이면 재실인원 산출부를 수행하는 S값 제2 판단부를 포함하며,

상기 제2 작동모드부는 외부 공기유입횟수(I)를 결정하는 Ib 결정부; 실내 이산화탄소 농도(S)를 추정하는 S 계산부; 이산화탄소 농도의 추적간격(T)을 계산하는 T 계산부; 및 검출된 재실자수(H)에 따른 시간당 환기횟수(ACR)를 결정하는 ACR 결정부를 포함하는 것을 특징으로 하는 재실인원의 변경을 반영하는 환기 제어시스템.

청구항 2

청구항 1에 있어서,

상기 정보 수집부는 기 설정된 시간 간격으로 실내 및 실외의 이산화탄소 농도 정보를 실측하는 이산화탄소 농 도측정부가 구비되는 것을 특징으로 하는 재실인원의 변경을 반영하는 환기 제어시스템.

청구항 3

청구항 1에 있어서,

상기 정보 수집부는 실외의 이산화탄소 농도 정보로서 제3자의 기 측정값을 사용하는 것을 특징으로 하는 재실 인원의 변경을 반영하는 환기 제어시스템.

청구항 4

청구항 1에 있어서,

상기 재실인원 산출부는 기 설정된 시간 간격으로 촬영된 실내 사진을 CNN 방식으로 분석하여 재실인원을 검출하는 것을 특징으로 하는 재실인원의 변경을 반영하는 환기 제어시스템.

청구항 5

청구항 1에 있어서,

상기 제1 작동모드부는

외부 공기유입횟수(I)를 결정하는 Ia 결정부;

실내 이산화탄소 농도(S)를 추정하는 S 계산부;

이산화탄소 농도의 추적간격(T)을 계산하는 T 계산부; 및

시간당 환기횟수(ACR)를 결정하는 ACR 결정부를 포함하는 것을 특징으로 하는 재실인원의 변경을 반영하는 환기 제어시스템.

청구항 6

청구항 5에 있어서,

상기 제1 작동모드부의 Ia 결정부는

다음 수식 1을 통해 Ia값을 결정하는 것을 특징으로 하는 재실인원의 변경을 반영하는 환기 제어시스템.

[수식 1] Ia = 0.0033

청구항 7

청구항 6에 있어서,

상기 제1 작동모드부의 S 계산부는

다음 수식 2를 통해 실내 이산화탄소 농도(S)를 산출하는 것을 특징으로 하는 것을 특징으로 하는 재실인원의 변경을 반영하는 환기 제어시스템.

[수식 2]

$$S = \frac{\{\left(1 - \frac{I}{2}\right) * A + \frac{H * G}{V} + O * I\}}{1 + \frac{I}{2}}$$

(여기서, I는 외부공기 유입횟수를 나타내고, A는 최초 실내 이산화탄소 농도(ppm)를 나타내고, H는 검출된 재실자수를 나타내고, G는 1인당 이산화탄소 발생량(ppm/person)을 나타내고, V는 실의 체적(m^3)을 나타내고, O는 외부 이산화탄소 동도(ppm)를 나타낸다.)

청구항 8

청구항 7에 있어서,

상기 제1 작동모드부의 T 계산부는

다음 수식 3을 통해 이산화탄소 농도의 추적간격(T)을 계산하는 것을 특징으로 하는 것을 특징으로 하는 재실인 원의 변경을 반영하는 환기 제어시스템.

[수식 3] T = T+1

청구항 9

청구항 8에 있어서,

상기 제1 작동모드부의 ACR 결정부는

다음 수식 4를 통해 시간당 환기횟수(ACRa)를 결정하는 것을 특징으로 하는 재실인원의 변경을 반영하는 환기 제어시스템.

[수식 4] ACRa = Ia ×60

(여기서, Ia 값은 단위시간(1분)에 0.0033회 외부공기가 유입되는 횟수이며, Ia의 단위시간을 1시간으로 수정하면 ACRa로 표현될 수 있다.)

청구항 10

삭제

청구항 11

청구항 1에 있어서,

상기 제2 작동모드부의 Ib 결정부는

다음 수식 5를 통해 Ib값을 결정하는 것을 특징으로 하는 재실인원의 변경을 반영하는 환기 제어시스템.

$$I_b = rac{H imes G imes 6}{55 imes V}$$

(여기서, Ib는 외부 공기유입횟수를 나타내고, H는 검출된 재실자 수를 나타내고, G는 이산화탄소발생량을 나타내고, V는 실의 체적을 나타낸다.)

청구항 12

청구항 11에 있어서,

상기 제2 작동모드부의 S 계산부는

다음 수식 2를 통해 실내 이산화탄소 농도(S)를 산출하는 것을 특징으로 하는 것을 특징으로 하는 재실인원의 변경을 반영하는 환기 제어시스템.

[수식 2]

$$S = \frac{\{\left(1 - \frac{I}{2}\right) * A + \frac{H * G}{V} + O * I\}}{1 + \frac{I}{2}}$$

(여기서, I는 외부공기 유입횟수를 나타내고, A는 최초 실내 이산화탄소 농도(ppm)를 나타내고, H는 검출된 재실자수를 나타내고, G는 1인당 이산화탄소 발생량(ppm/person)을 나타내고, V는 실의 체적(m³)을 나타내고, O는 외부 이산화탄소 동도(ppm)를 나타낸다.)

청구항 13

청구항 12에 있어서.

상기 제2 작동모드부의 T 계산부는

다음 수식 3을 통해 이산화탄소 농도의 추적간격(T)을 계산하는 것을 특징으로 하는 것을 특징으로 하는 재실인 원의 변경을 반영하는 환기 제어시스템.

[수식 3] T = T+1

청구항 14

청구항 13에 있어서,

상기 제2 작동모드부의 ACR 결정부는

검출된 재실자수(H)에 따른 시간당 환기횟수(ACRb)를 다음 수식 6으로 결정하는 것을 특징으로 하는 재실인원의 변경을 반영하는 환기 제어시스템.

$$A CR_b = I_b \times 60 = \frac{H \times G \times 6 \times 60}{55 \times V}$$

(여기서, Ib는 외부 공기유입횟수를 나타내고, H는 검출된 재실자 수를 나타내고, G는 이산화탄소발생량을 나타내고, V는 실의 체적을 나타낸다.)

청구항 15

데이터베이스 및 연산기능을 가진 제어서버에 의해 수행되는 환기 제어방법으로서, 상기 제어서버는

정보 수집부가 실내 및 실외의 이산화탄소 농도 정보 및 실의 체적 정보를 수집하고, 수집된 정보를 제1 작동모 드부 및 제2 작동모드부로 전송하는 S100 단계; 재실인원 산출부가 재실자의 인원수를 검출하는 S200 단계; 작

동모드 판단부는 상기 재실인원 산출부에서 검출된 인원수가 영(0)이면 제1 작동모드부를 수행하고, 검출된 인원수가 1인 이상이면 S값 제1 판단부를 거쳐 제2 작동모드부를 수행하는 S300 단계; S값 제1 판단부는 S값이 1000ppm 이하이면, 검출된 인원이 1인 이상이어도 제1 작동모드부를 수행하고, S값이 1000ppm을 초과하면 제2 작동모드부를 수행하는 S400 단계; 제1 작동모드부는 작동모드 판단부 또는 S값 제1 판단부를 통해 수행되며, 외부공기 유입회수 및 실내 이산화탄소 추정 농도를 이용하여 시간당 환기회수를 산출하는 S500 단계; 제2 작동모드부는 S값 제1 판단부를 통해 수행되며, 외부공기 유입회수 및 실내 이산화탄소 농도를 이용하여, 재실인원에 따른 시간당 환기횟수를 산출하는 S600 단계; 및 S값 제2 판단부는 제2 작동모드부가 수행된 후, S값이 850ppm 미만이면 제1 작동모드부를 수행하고, S값이 850ppm 이상이면 재실인원 산출부를 수행하는 S700 단계를 포함하며,

S600 단계는 Ib 결정부가 외부 공기유입횟수(I)를 결정하는 S610 단계; S 계산부가 실내 이산화탄소 농도(S)를 추정하는 S620 단계; T 계산부가 이산화탄소 농도의 추적간격(T)을 계산하는 S630 단계; 및 ACR 결정부가 검출된 재실자수(H)에 따른 시간당 환기횟수(ACR)를 결정하는 S640 단계를 포함하는 것을 특징으로 하는 재실인원의 변경을 반영하는 환기 제어방법.

청구항 16

청구항 15에 있어서,

S500 단계는

Ia 결정부가 외부 공기유입횟수(I)를 결정하는 S510 단계;

S 계산부가 실내 이산화탄소 농도(S)를 추정하는 S520 단계;

T 계산부가 이산화탄소 농도의 추적간격(T)을 계산하는 S530 단계; 및

ACR 결정부가 시간당 환기횟수(ACR)를 결정하는 S540 단계를 포함하는 것을 특징으로 하는 재실인원의 변경을 반영하는 환기 제어방법.

청구항 17

청구항 16에 있어서,

S540 단계의 ACR 결정부는

다음 수식 4를 통해 시간당 환기횟수(ACRa)를 결정하는 것을 특징으로 하는 재실인원의 변경을 반영하는 환기 제어방법.

[수식 4] ACRa = Ia ×60

(여기서, Ia 값은 단위시간(1분)에 0.0033회 외부공기가 유입되는 횟수이며, Ia의 단위시간을 1시간으로 수정하면 ACRa로 표현될 수 있다.)

청구항 18

삭제

청구항 19

청구항 15에 있어서,

S640 단계의 ACR 결정부는

검출된 재실자수(H)에 따른 시간당 환기횟수(ACRb)를 다음 수식 6으로 결정하는 것을 특징으로 하는 재실인원의 변경을 반영하는 환기 제어방법.

$$A \ CR_b = I_b imes 60 = rac{H imes G imes 6 imes 60}{55 imes V}$$

(여기서, Ib는 외부 공기유입횟수를 나타내고, H는 검출된 재실자 수를 나타내고, G는 이산화탄소발생량을 나타

내고, V는 실의 체적을 나타낸다.)

청구항 20

하드웨어와 결합되어, 청구항 15에 따른 재실인원의 변경을 반영하는 환기 제어방법을 컴퓨터에 의해 실행시키 기 위하여 컴퓨터가 판독 가능한 기록매체에 저장된 컴퓨터 프로그램.

발명의 설명

기술분야

[0001] 본 발명은 환기 제어시스템 및 환기 제어방법에 관한 것이다. 구체적으로는 재실인원의 변경을 반영하는 환기 제어시스템 및 환기 제어방법에 관한 것이다.

배경기술

- [0002] 실내 환기 제어시스템의 경우, 이산화탄소 측정센서의 설치 위치에 따라서 실제 실의 이산화탄소 농도와 센서가 감지한 이산화탄소의 농도가 다르게 측정되는 문제점이 있다.
- [0003] 나아가, 이산화탄소를 발생시키는 재실자와 이산화탄소 측정센서의 상호 거리가 멀거나 공기교환율이 낮으면 측정값의 차이가 더욱 크게 발생될 수 있다.
- [0004] 그럼에도 불구하고, 종래의 실내 환기시스템은 재실인원의 변경을 반영하지 않은 문제점이 있었다.

선행기술문헌

특허문헌

[0005] (특허문헌 0001) (문헌 1) 한국등록특허공보 제10-2156121호 (2020.09.09)

발명의 내용

해결하려는 과제

- [0006] 본 발명에 따른 재실인원의 변경을 반영하는 환기 제어시스템 및 환기 제어방법은 다음과 같은 해결과제를 가진 다.
- [0007] 첫째, 환기시스템에 재실인원의 변화를 반영하고자 한다.
- [0008] 둘째, 재실인원의 세부적인 변화에 따라 적절한 환기횟수를 제어하고자 한다.
- [0009] 본 발명의 해결과제는 이상에서 언급한 것들에 한정되지 않으며, 언급되지 아니한 다른 해결과제들은 아래의 기 재로부터 당업자에게 명확하게 이해될 수 있을 것이다.

과제의 해결 수단

[0010] 본 발명은 데이터베이스 및 연산기능을 가진 제어서버에 의해 수행되는 환기 제어시스템으로서, 실내 및 실외의 이산화탄소 농도 정보 및 실의 체적 정보를 수집하고, 수집된 정보를 제1 작동모드부 및 제2 작동모드부로 전송하는 정보 수집부; 재실자의 인원수를 검출하는 재실인원 산출부; 상기 재실인원 산출부에서 검출된 인원수가 영(0)이면 제1 작동모드부를 수행하고, 검출된 인원수가 1인 이상이면 S값 제1 판단부를 거쳐 제2 작동모드부를 수행하는 작동모드 판단부; S값이 1000ppm 이하이면, 검출된 인원이 1인 이상이어도 제1 작동모드부를 수행하고, S값이 1000ppm을 초과하면 제2 작동모드부를 수행하는 S값 제1 판단부; 작동모드 판단부 또는 S값 제1 판단부를 통해 수행되며, 외부공기 유입회수 및 실내 이산화탄소 추정 농도를 이용하여 시간당 환기회수를 산출하는 제1 작동모드부; S값 제1 판단부를 통해 수행되며, 외부공기 유입회수 및 실내 이산화탄소 농도를 이용하여, 재실인원에 따른 시간당 환기횟수를 산출하는 제2 작동모드부; 및 제2 작동모드부가 수행된 후, S값이 850ppm 미만이면 제1 작동모드부를 수행하고, S값이 850ppm 이상이면 재실인원 산출부를 수행하는 S값 제2 판단

부를 포함한다.

- [0011] 본 발명에 있어서, 상기 정보 수집부는 기 설정된 시간 간격으로 실내 및 실외의 이산화탄소 농도 정보를 실측하는 이산화탄소 농도측정부가 구비될 수 있다.
- [0012] 본 발명에 있어서, 상기 정보 수집부는 실외의 이산화탄소 농도 정보로서 제3자의 기 측정값을 사용할 수 있다.
- [0013] 본 발명에 있어서, 상기 재실인원 산출부는 기 설정된 시간 간격으로 촬영된 실내 사진을 CNN 방식으로 분석하여 재실인원을 검출할 수 있다.
- [0014] 본 발명에 있어서, 상기 제1 작동모드부는 외부 공기유입횟수(I)를 결정하는 Ia 결정부; 실내 이산화탄소 농도 (S)를 추정하는 S 계산부; 이산화탄소 농도의 추적간격(T)을 계산하는 T 계산부; 및 시간당 환기횟수(ACR)를 결정하는 ACR 결정부를 포함할 수 있다.
- [0015] 청구항 5에 있어서, 상기 제1 작동모드부의 Ia 결정부는 수식 1을 통해 Ia값을 결정할 수 있다.
- [0016] 본 발명에 있어서, 상기 제1 작동모드부의 S 계산부는 수식 2를 통해 실내 이산화탄소 농도(S)를 산출하는 것을 특징으로 할 수 있다.
- [0017] 본 발명에 있어서, 상기 제1 작동모드부의 T 계산부는 수식 3을 통해 이산화탄소 농도의 추적간격(T)을 계산하는 것을 특징으로 할 수 있다.
- [0018] 본 발명에 있어서, 상기 제1 작동모드부의 ACR 결정부는 수식 4를 통해 시간당 환기횟수(ACRa)를 결정할 수 있다.
- [0019] 본 발명에 있어서, 상기 제2 작동모드부는 외부 공기유입횟수(I)를 결정하는 Ib 결정부; 실내 이산화탄소 농도 (S)를 추정하는 S 계산부; 이산화탄소 농도의 추적간격(T)을 계산하는 T 계산부; 및 검출된 재실자수(H)에 따른 시간당 환기횟수(ACR)를 결정하는 ACR 결정부를 포함할 수 있다.
- [0020] 본 발명에 있어서, 상기 제2 작동모드부의 Ib 결정부는 수식 5를 통해 Ib값을 결정할 수 있다.
- [0021] 본 발명에 있어서, 상기 제2 작동모드부의 S 계산부는 수식 2를 통해 실내 이산화탄소 농도(S)를 산출하는 것을 특징으로 할 수 있다.
- [0022] 본 발명에 있어서, 상기 제2 작동모드부의 T 계산부는 수식 3을 통해 이산화탄소 농도의 추적간격(T)을 계산하는 것을 특징으로 할 수 있다.
- [0023] 본 발명에 있어서, 상기 제2 작동모드부의 ACR 결정부는 검출된 재실자수(H)에 따른 시간당 환기횟수(ACRb)를 수식 6으로 결정할 수 있다.
- [0025] 본 발명은 데이터베이스 및 연산기능을 가진 제어서버에 의해 수행되는 환기 제어방법으로서, 상기 제어서버는 정보 수집부가 실내 및 실외의 이산화탄소 농도 정보 및 실의 체적 정보를 수집하고, 수집된 정보를 제1 작동모드부 및 제2 작동모드부로 전송하는 S100 단계; 재실인원 산출부가 재실자의 인원수를 검출하는 S200 단계; 작동모드 판단부는 상기 재실인원 산출부에서 검출된 인원수가 영(0)이면 제1 작동모드부를 수행하고, 검출된 인원수가 1인 이상이면 S값 제1 판단부를 거쳐 제2 작동모드부를 수행하는 S300 단계; S값 제1 판단부는 S값이 1000ppm 이하이면, 검출된 인원이 1인 이상이어도 제1 작동모드부를 수행하고, S값이 1000ppm을 초과하면 제2 작동모드부를 수행하는 S400 단계; 제1 작동모드부는 작동모드 판단부 또는 S값 제1 판단부를 통해 수행되며, 외부공기 유입회수 및 실내 이산화탄소 추정 농도를 이용하여 시간당 환기회수를 산출하는 S500 단계; 제2 작동모드부는 S값 제1 판단부를 통해 수행되며, 외부공기 유입회수 및 실내 이산화탄소 농도를 이용하여, 재실인원에 따른 시간당 환기횟수를 산출하는 S600 단계; 및 S값 제2 판단부는 제2 작동모드부가 수행된 후, S값이 850ppm 미만이면 제1 작동모드부를 수행하고, S값이 850ppm 이상이면 재실인원 산출부를 수행하는 S700 단계를 포함할 수 있다.
- [0026] 본 발명에 있어서, S500 단계는 Ia 결정부가 외부 공기유입횟수(I)를 결정하는 S510 단계; S 계산부가 실내 이산화탄소 농도(S)를 추정하는 S520 단계; T 계산부가 이산화탄소 농도의 추적간격(T)을 계산하는 S530 단계; 및 ACR 결정부가 시간당 환기횟수(ACR)를 결정하는 S540 단계를 포함할 수 있다.
- [0027] 본 발명에 있어서, S540 단계의 ACR 결정부는 수식 4를 통해 시간당 환기횟수(ACRa)를 결정할 수 있다.
- [0028] 본 발명에 있어서, S600 단계는 Ib 결정부가 외부 공기유입횟수(I)를 결정하는 S610 단계; S 계산부가 실내 이산화탄소 농도(S)를 추정하는 S620 단계; T 계산부가 이산화탄소 농도의 추적간격(T)을 계산하는 S630 단계; 및

ACR 결정부가 검출된 재실자수(H)에 따른 시간당 환기횟수(ACR)를 결정하는 S640 단계를 포함할 수 있다.

- [0029] 본 발명에 있어서, S640 단계의 ACR 결정부는 검출된 재실자수(H)에 따른 시간당 환기횟수(ACRb)를 수식 6으로 결정할 수 있다.
- [0031] 본 발명은 하드웨어와 결합되어, 본 발명에 따른 재실인원의 변경을 반영하는 환기 제어방법을 컴퓨터에 의해 실행시키기 위하여 컴퓨터가 판독 가능한 기록매체에 저장된 컴퓨터 프로그램으로 구현될 수 있다.

발명의 효과

- [0032] 본 발명에 따른 재실인원의 변경을 반영하는 환기 제어시스템 및 환기 제어방법은 다음과 같은 효과를 가진다.
- [0033] 첫째, 환기시스템에 재실인원의 변화를 반영하는 효과가 있다.
- [0034] 둘째, 재실인원의 세부적인 변화에 따라 적절한 환기횟수를 제어하는 효과가 있다.
- [0035] 본 발명의 효과는 이상에서 언급된 것들에 한정되지 않으며, 언급되지 아니한 다른 효과들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.

도면의 간단한 설명

[0036] 도 1은 본 발명에 따른 재실인원의 변경을 반영하는 환기 제어시스템의 구성도이다.

도 2는 본 발명에 따른 제1 작동모드부의 세부 구성도이다.

도 3은 본 발명에 따른 제2 작동모드부의 세부 구성도이다.

도 4는 본 발명에 따른 재실인원의 변경을 반영하는 환기 제어시스템의 작동흐름도이다.

도 5는 본 발명에 따른 재실인원의 변경을 반영하는 환기 제어방법의 순서도이다.

발명을 실시하기 위한 구체적인 내용

- [0037] 이하, 첨부한 도면을 참조하여, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 설명한다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 이해 할 수 있는 바와 같이, 후술하는 실시예는 본 발명의 개념과 범위를 벗어나지 않는 한도 내에서 다양한 형태로 변형될 수 있다. 가능한 한 동일하거나 유사한 부분은 도면에서 동일한 도면부호를 사용하여 나타낸다.
- [0038] 본 명세서에서 사용되는 전문용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도 하지는 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다.
- [0039] 본 명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및/또는 군의 존재나 부가를 제외시키는 것은 아니다.
- [0040] 본 명세서에서 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.
- [0041] 본 명세서에서 사용되는 방향에 관한 표현, 예를 들어 전/후/좌/우의 표현, 상/하의 표현, 종방향/횡방향의 표현은 도면에 개시된 방향을 참고하여 해석될 수 있다.
- [0043] 이하에서는 도면을 참고하여 본 발명을 설명하고자 한다. 참고로, 도면은 본 발명의 특징을 설명하기 위하여, 일부 과장되게 표현될 수도 있다. 이 경우, 본 명세서의 전 취지에 비추어 해석되는 것이 바람직하다.
- [0045] 도 1은 본 발명에 따른 재실인원의 변경을 반영하는 환기 제어시스템의 구성도이다.
- [0046] 본 발명은 데이터베이스 및 연산기능을 가진 제어서버에 의해 수행되는 환기 제어시스템으로서, 정보 수집부 (100), 재실인원 산출부(200), 작동모드 판단부(300), S값 제1 판단부(400), 제1 작동모드부(500), 제2 작동모드부(600) 및 S값 제2 판단부(700)를 포함한다.

- [0048] 본 발명에 따른 정보 수집부(100)는 실내 및 실외의 이산화탄소 농도 정보 및 실의 체적 정보를 수집하고, 수집 된 정보를 제1 작동모드부(500) 및 제2 작동모드부(600)로 전송할 수 있다.
- [0049] 본 발명에 따른 재실인원 산출부(200)는 재실자의 인원수를 검출할 수 있다.
- [0050] 본 발명에 따른 작동모드 판단부(300)는 상기 재실인원 산출부(200)에서 검출된 인원수가 영(0)이면 제1 작동모 드부(500)를 수행하고, 검출된 인원수가 1인 이상이면 S값 제1 판단부(400)를 거쳐 제2 작동모드부(600)를 수행할 수 있다.
- [0051] 본 발명에 따른 S값 제1 판단부(400)는 S값이 1000ppm 이하이면, 검출된 인원이 1인 이상이어도 제1 작동모드부 (500)를 수행하고, S값이 1000ppm을 초과하면 제2 작동모드부(600)를 수행할 수 있다.
- [0052] 본 발명에 따른 제1 작동모드부(500)는 작동모드 판단부(300) 또는 S값 제1 판단부(400)를 통해 수행되며, 외부 공기 유입회수 및 실내 이산화탄소 추정 농도를 이용하여 시간당 환기회수를 산출할 수 있다.
- [0053] 본 발명에 따른 제2 작동모드부(600)는 S값 제1 판단부(400)를 통해 수행되며, 외부공기 유입회수 및 실내 이산 화탄소 농도를 이용하여, 재실인원에 따른 시간당 환기횟수를 산출할 수 있다.
- [0054] 본 발명에 따른 S값 제2 판단부(700)는 제2 작동모드부(600)가 수행된 후, S값이 850ppm 미만이면 제1 작동모드 부(500)를 수행하고, S값이 850ppm 이상이면 재실인원 산출부(200)를 수행할 수 있다.
- [0057] 본 발명에 따른 정보 수집부(100)는 기 설정된 시간 간격으로 실내 및 실외의 이산화탄소 농도 정보를 실측하는 이산화탄소 농도측정부(미도시)가 구비될 수 있다. 이산화탄소 농도측정부는 측정센서를 통해 실내 및 실외의 이산화탄소 실측 농도값을 수집할 수 있다.
- [0059] 본 발명에 따른 정보 수집부(100)는 실외의 이산화탄소 농도 정보로서 제3자의 기 측정값을 사용할 수 있다.
- [0060] 예를 들어, 기상청과 같은 제3자의 기 측정값을 사용할 수 있다. 실내와 달리 실외는 매우 넓은 공간이므로, 기 상청 등에서 제공되는 농도값을 사용하여도 큰 차이가 없을 것으로 예상된다.
- [0062] 본 발명에 따른 재실인원 산출부(200)는 기 설정된 시간 간격으로 촬영된 실내 사진을 CNN 방식으로 분석하여 재실인원을 검출할 수 있다. 여기에는 영상이미지를 활용하여 CNN 방식으로 재실인원을 검출하는 공지의 기술을 적용할 수 있을 것이다.
- [0064] 도 2는 본 발명에 따른 제1 작동모드부의 세부 구성도이다.
- [0065] 본 발명에 따른 제1 작동모드부(500)는 외부 공기유입횟수(I)를 결정하는 Ia 결정부(510); 실내 이산화탄소 농도(S)를 추정하는 S 계산부(520); 이산화탄소 농도의 추적간격(T)을 계산하는 T 계산부(530); 및 시간당 환기횟수(ACR)를 결정하는 ACR 결정부(540)를 포함한다.
- [0067] 본 발명에 있어서, 제1 작동모드부(500)의 I 결정부(510)는 다음 수식 1을 통해 Ia값을 결정할 수 있다.
- [0068] [수식 1] Ia = 0.0033
- [0070] 본 발명에 있어서, 제1 작동모드부(500)의 S 계산부(520)는 다음 수식 2를 통해 실내 이산화탄소 농도(S)를 산출할 수 있다.
- [0071] [수식 2]

[0072]

$$S = \frac{\{\left(1 - \frac{I}{2}\right) * A + \frac{H * G}{V} + O * I\}}{1 + \frac{I}{2}}$$

- [0073] (여기서, I는 외부공기 유입횟수를 나타내고, A는 최초 실내 이산화탄소 농도(ppm)를 나타내고, H는 검출된 재실자수를 나타내고, G는 1인당 이산화탄소 발생량(ppm/person)을 나타내고, V는 실의 체적(m³)을 나타내고, O는 외부 이산화탄소 동도(ppm)를 나타낸다.)
- [0074] 본 발명에 있어서, 제1 작동모드부(500)의 T 계산부(530)는 다음 수식 3을 통해 이산화탄소 농도의 추적간격 (T)을 계산할 수 있다.

- [0075] 「수식 3] T = T+1
- [0077] 본 발명에 있어서, 제1 작동모드부(500)의 ACR 결정부(540)는 다음 수식 4를 통해 시간당 환기횟수(ACRa)를 결정할 수 있다.
- [0078] [수식 4] ACRa = Ia ×60
- [0080] 여기서, Ia 값은 단위시간(1분)에 0.0033회 외부공기가 유입되는 횟수이며, Ia의 단위시간을 1시간으로 수정하면 ACRa로 표현될 수 있다.
- [0082] 도 3은 본 발명에 따른 제2 작동모드부의 세부 구성도이다.
- [0083] 본 발명에 따른 제2 작동모드부(600)는 외부 공기유입횟수(I)를 결정하는 I 결정부(610); 실내 이산화탄소 농도 (S)를 추정하는 S 계산부(620); 이산화탄소 농도의 추적간격(T)을 계산하는 T 계산부(630); 및 검출된 재실자수 (H)에 따른 시간당 환기횟수(ACR)를 결정하는 ACR 결정부(640)를 포함한다.
- [0085] 본 발명에 있어서, 제2 작동모드부(600)의 Ib 결정부(610)는 다음 수식 5를 통해 Ib값을 결정할 수 있다.

$$I_b = \frac{H \times G \times 6}{55 \times V}$$

- [0086] [수식 5]
- [0087] (여기서, Ib는 외부 공기유입횟수를 나타내고, H는 검출된 재실자 수를 나타내고, G는 이산화탄소발생량을 나타내고, V는 실의 체적을 나타낸다.)
- [0089] 본 발명에 있어서, 제2 작동모드부(600)의 S 계산부(620)는 다음 수식 2를 통해 실내 이산화탄소 농도(S)를 산출할 수 있다.
- [0090] [수식 2]

$$S = \frac{\{\left(1 - \frac{I}{2}\right) * A + \frac{H * G}{V} + O * I\}}{1 + \frac{I}{2}}$$

- [0091]
- [0092] (여기서, I는 외부공기 유입횟수를 나타내고, A는 최초 실내 이산화탄소 농도(ppm)를 나타내고, H는 검출된 재실자수를 나타내고, G는 1인당 이산화탄소 발생량(ppm/person)을 나타내고, V는 실의 체적(m³)을 나타내고, 0는 외부 이산화탄소 동도(ppm)를 나타낸다.)
- [0094] 본 발명에 있어서, 제2 작동모드부(600)의 T 계산부(630)는 다음 수식 3을 통해 이산화탄소 농도의 추적간격 (T)을 계산할 수 있다.
- [0095] [수식 3] T = T+1
- [0097] 본 발명에 있어서, 제2 작동모드부(600)의 ACR 결정부(640)는 검출된 재실자수(H)에 따른 시간당 환기횟수 (ACR_b)를 다음 수식 6으로 결정할 수 있다.

$$ACR_b = I_b \times 60 = \frac{H \times G \times 6 \times 60}{55 \times V}$$

- [0098] [수식 6]
- [0100] 여기서, Ib는 외부 공기유입횟수를 나타내고, H는 검출된 재실자 수를 나타내고, G는 이산화탄소발생량을 나타내고, V는 실의 체적을 나타낸다.
- [0102] 본 발명에서, 시간당 환기횟수는 외부공기의 유입량을 의미한다.
- [0103] 예를 들어, 실의 체적이 78.3 m'일때, ACR이 0.48 times/hr이면, 1시간에 실의 체적의 0.48%만큼의 외부공기 유입량(37.6m'=78.3×0.48)이 결정될 수 있다.
- [0105] 이하에서는, 본 발명에 따른 환기시스템의 작동원리의 일 실시예를 설명하고자 한다.

- [0106] 도 4는 본 발명에 따른 재실인원의 변경을 반영하는 환기 제어시스템의 작동흐름도이다.
- [0108] 환기시스템을 최초 설치하면서 이산화탄소 농도를 측정하여 최초 실내 이산화탄소 농도 값(A)을 입력한다.
- [0109] 실의 가로, 세로, 높이를 실측하고 체적(V)을 계산하여 입력한다.
- [0110] 외부 이산화탄소 농도(0)를 측정하여 입력한다.
- [0111] T값은 알고리즘에 의해 출력되는 값을 보여주는 인터벌로 사용자에 의해 조정 가능하며, 예를 들어 1분으로 설정할 수도 있다.
- [0112] H 값은 연결되어 있는 재실자수 판단 알고리즘으로 부터 전달되는 결과를 사용할 수 있다.
- [0113] S = A 라는 값을 초기값으로 지정해 주는 것이 바람직하다.
- [0115] 재실자가 n명인 경우의 계산은 다음과 같이 수행될 수 있다.
- [0116] H=0이 아닌 경우 False 로 이동하여 S(실의 이산화탄소 농도)를 검토한 후, 1000이상일 경우에만 계산 알고리즘 으로 이동할 수 있다.
- [0117] I 값은 인원수에 따라 계산되는 외부 공기 유입 횟수를 나타낸다.
- [0118] AT 계산의 경우 코딩 및 계산상의 편의를 도모하기 위하여 임시로 활용하며, 계산 직후 S =AT라는 형태로 S 값으로 전환할 수 있다(도 4 참조).
- [0119] T는 전술한 설명과 동일하다.
- [0120] H 값에 따른 ACR(시간당환기 횟수)를 지정하여 모니터링 할 수 있도록 화면 또는 프로그램상에서 출력할 수도 있다.
- [0122] 재실자 수 0명 또는 재실자 수에 상관없이 실내 이산화탄소 농도가 1000ppm 이하인 경우, 즉 H = 0 이 True 이 거나, 실내 이산화탄소 농도 1000ppm 이하의 경우에는 전술한 재실자 n 명인 경우와 동일한 과정을 진행하지만 I 값에 차이가 있다.
- [0123] I 값의 경우, 환기장치가 작동하지 않아 자연적으로 외부에서 유입되는 공기 횟수로 도출하였다(실측값).
- [0124]
- [0125] 본 발명에 따른 환기시스템은 종래의 이산화탄소 센서 기반 환기시스템과 다음과 같은 차이점을 가진다.
- [0126] 이산화탄소 센서의 설치 위치에 따라서 실제 실의 이산화탄소 농도와 센서가 감지한 이산화탄소의 농도가 다르다. 재실자(이산화탄소 발생체)로 부터 거리가 멀거나 공기교환율이 낮으면 그 시간은 더 크게 발생한다.
- [0127] 본 발명의 경우 이러한 시간차를 최소화 할 수 있도록 1분(사용자에 의해 조절 가능,T값) 단위 실의 이산화탄소 농도를 즉각적으로 확인 가능한 차이점이 있다.
- [0128] 또한, 이산화탄소 센서는 주기적인 조정(Calibration)이 필요하지만, 본 환기시스템은 이러한 주기적인 조정이 필요없는 차이점이 있다.
- [0129] 이산화탄소 센서는 설치에 있어 제한 사항이 있다. 예로, 재실자 동선 간섭 최소화, 상시 전원공급 및 데이터 송신을 위한 전기&통신 설비 등이 필요하며, 재실자로부터 거리 이격이 필수이다. 왜냐하면, 발생체로부터 너무 가까우면 이산화탄소 값이 올바르게 측정되지 않기 때문이다.
- [0130] 하지만, 본 환기시스템은 이러한 제한사항이 없는 차이점이 있다.
- [0133] 한편, 본 발명은 환기 제어방법 발명으로 구현될 수 있다. 구체적으로 재실인원의 변경을 반영하는 환기 제어방법으로 구현될 수 있다.
- [0134] 이러한 방법발명은 전술한 시스템발명과 발명의 카테고리는 상이하나, 실질적으로 동일한 발명에 해당된다. 따라서, 시스템발명과 공통되는 구성은, 전술한 설명으로 대체하기로 하며, 이하에서는 본 방법발명의 요지 위주로 설명하고자 한다.
- [0135] 도 5는 본 발명에 따른 재실인원의 변경을 반영하는 환기 제어방법의 순서도이다.
- [0136] 본 발명은 데이터베이스 및 연산기능을 가진 제어서버에 의해 수행되는 환기 제어방법으로서, 상기 제어서버는

정보 수집부(100)가 실내 및 실외의 이산화탄소 농도 정보 및 실의 체적 정보를 수집하고, 수집된 정보를 제1 작동모드부(500) 및 제2 작동모드부(600)로 전송하는 S100 단계; 재실인원 산출부(200)가 재실자의 인원수를 검출하는 S200 단계; 작동모드 판단부(300)는 상기 재실인원 산출부(200)에서 검출된 인원수가 영(0)이면 제1 작동모드부(500)를 수행하고, 검출된 인원수가 1인 이상이면 S값 제1 판단부(400)를 거쳐 제2 작동모드부(600)를 수행하는 S300 단계; S값 제1 판단부(400)는 S값이 1000ppm 이하이면, 검출된 인원이 1인 이상이어도 제1 작동모드부(500)를 수행하고, S값이 1000ppm을 초과하면 제2 작동모드부(600)를 수행하는 S400 단계; 제1 작동모드부(500)는 작동모드 판단부(300) 또는 S값 제1 판단부(400)를 통해 수행되며, 외부공기 유입회수 및 실내 이산화탄소 추정 농도를 이용하여 시간당 환기회수를 산출하는 S500 단계; 제2 작동모드부(600)는 S값 제1 판단부(400)를 통해 수행되며, 외부공기 유입회수 및 실내 이산화탄소 농도를 이용하여, 재실인원에 따른 시간당 환기횟수를 산출하는 S600 단계; 및 S값 제2 판단부(700)는 제2 작동모드부(600)가 수행된 후, S값이 850ppm 미만이면 제1 작동모드부(500)를 수행하고, S값이 850ppm 이상이면 재실인원 산출부(200)를 수행하는 S700 단계를 포함한다.

- [0138] 본 발명에 따른 S500 단계는 Ia 결정부(510)가 외부 공기유입횟수(I)를 결정하는 S510 단계; S 계산부(520)가 실내 이산화탄소 농도(S)를 추정하는 S520 단계; T 계산부(530)가 이산화탄소 농도의 추적간격(T)을 계산하는 S530 단계; 및 ACR 결정부(540)가 시간당 환기횟수(ACR)를 결정하는 S540 단계를 포함한다.
- [0140] 본 발명에 따른 S540 단계의 ACR 결정부(540)는 다음 수식 4를 통해 시간당 환기횟수(ACRa)를 결정할 수 있다.
- [0141] [수식 4] ACRa = Ia ×60
- [0142] 여기서, Ia 값은 단위시간(1분)에 0.0033회 외부공기가 유입되는 횟수이며, Ia의 단위시간을 1시간으로 수정하면 ACRa로 표현될 수 있다.
- [0144] 본 발명에 따른 S600 단계는 Ib 결정부(610)가 외부 공기유입횟수(I)를 결정하는 S610 단계; S 계산부(620)가 실내 이산화탄소 농도(S)를 추정하는 S620 단계; T 계산부(630)가 이산화탄소 농도의 추적간격(T)을 계산하는 S630 단계; 및 ACR 결정부(640)가 검출된 재실자수(H)에 따른 시간당 환기횟수(ACR)를 결정하는 S640 단계를 포함한다.
- [0146] 본 발명에 따른 S640 단계의 ACR 결정부(640)는 검출된 재실자수(H)에 따른 시간당 환기횟수(ACRb)를 다음 수식 6으로 결정할 수 있다.

$$ACR_b = I_b \times 60 = \frac{H \times G \times 6 \times 60}{55 \times V}$$

- [0147] [수식 6]
- [0149] 여기서, Ib는 외부 공기유입횟수를 나타내고, H는 검출된 재실자 수를 나타내고, G는 이산화탄소발생량을 나타내고, V는 실의 체적을 나타낸다.
- [0152] 또한, 본 발명은 컴퓨터프로그램으로 구현될 수도 있다. 구체적으로 본 발명은 하드웨어와 결합되어, 본 발명에 따른 재실인원의 변경을 반영하는 환기 제어방법을 컴퓨터에 의해 실행시키기 위하여 컴퓨터가 판독 가능한 기록매체에 저장된 컴퓨터 프로그램으로 구현될 수 있다.
- [0153] 본 발명의 실시예에 따른 방법들은 다양한 컴퓨터 수단을 통하여 판독 가능한 프로그램 형태로 구현되어 컴퓨터로 판독 가능한 기록매체에 기록될 수 있다. 여기서, 기록매체는 프로그램 명령, 데이터 파일, 데이터구조 등을 단독으로 또는 조합하여 포함할 수 있다. 기록매체에 기록되는 프로그램 명령은 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 예컨대 기록매체는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CDROM, DVD와 같은 광 기록매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치를 포함한다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어를 포함할 수 있다. 이러한 하드웨어 장치는 본 발명의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
- [0155] 본 명세서에서 설명되는 실시예와 첨부된 도면은 본 발명에 포함되는 기술적 사상의 일부를 예시적으로 설명하는 것에 불과하다. 따라서, 본 명세서에 개시된 실시예들은 본 발명의 기술적 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이므로, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아님은 자명

하다. 본 발명의 명세서 및 도면에 포함된 기술적 사상의 범위 내에서 당업자가 용이하게 유추할 수 있는 변형예와 구체적인 실시 예는 모두 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

부호의 설명

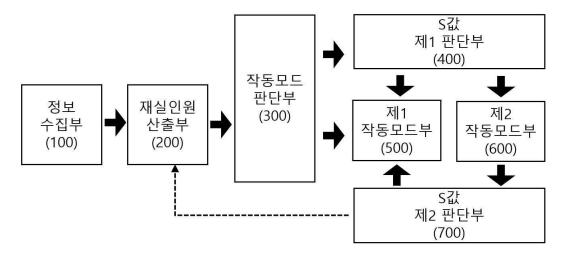
[0156] 100 : 정보 수집부 200 : 재실인원 산출부

300 : 작동모드 판단부 400 : S값 제1 판단부

500 : 제1 작동모드부 510 : Ia 결정부

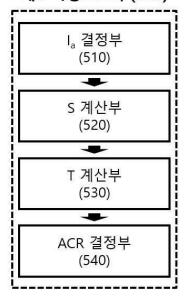
520 : S 계산부 530 : T 계산부

540 : ACR 결정부

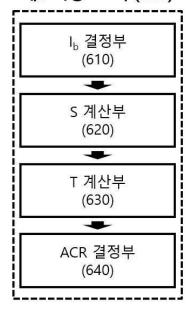

600 : 제1 작동모드부610 : Ib 결정부620 : S 계산부630 : T 계산부

640 : ACR 결정부

700 : S값 제2 판단부


도면

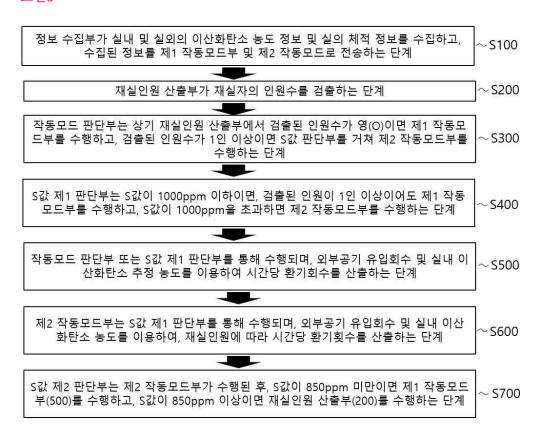
도면1


도면2

제1 작동모드부(500)



도면3


제2 작동모드부(600)

도면4

도면5

