2023년03월07일





## (19) 대한민국특허청(KR)

(12) 공개특허공보(A)

(51) 국제특허분류(Int. Cl.)

**A01K** 67/027 (2006.01) **C07K** 14/435 (2006.01)

(52) CPC특허분류

**A01K** 67/0276 (2013.01) **C07K** 14/4354 (2013.01)

(21) 출원번호 10-2021-0113959

(22) 출원일자 **2021년08월27일** 심사청구일자 **2021년08월27일**  (11) 공개번호 10-2023-0031567

(71) 출원인

(43) 공개일자

연세대학교 산학협력단

서울특별시 서대문구 연세로 50 (신촌동, 연세대 학교)

(72) 발명자

백융기

서울특별시 서대문구 연세로 50 연세대학교 한전 산학협동연구관 425호

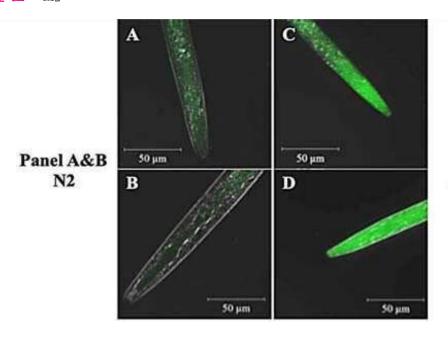
정혜림

서울특별시 서대문구 연세로 50 연세대학교 한전 산학협동연구관 424호

(뒷면에 계속)

(74) 대리인

특허법인다나


전체 청구항 수 : 총 8 항

# (54) 발명의 명칭 **항산화 작용의 새로운 조절자 알캣(RCAT)의 생물학적 기능 규명과 해당 질환 동물 모델의 생성과 활용**

#### (57) 요 약

본 발명은 산화 스트레스 관련 새로운 조절자 알캣(RCAT)의 생물학적 기능 규명과 해당 질환 동물 및 세포주 모델의 생성과 활용에 관한 것으로, 보다 상세하게는, 본 발명은 예쁜꼬마선충 내 항산화 스트레스 조절자에 대한 세포 특이적인 제어 기능을 갖는 알캣(RCAT)의 돌연변이종과 RCAT을 발현시킨 인간 세포주를 이용하여 산화 스트레스 연구를 위한 동물 및 인간세포주 모델로 활용할 수 있다.

#### 대 표 도 - 도2



Panel C&D RCAT mutant

-1-

(52) CPC특허분류

A01K 2217/075 (2013.01) A01K 2267/0356 (2013.01) A01K 2267/0393 (2013.01)

(72) 발명자

## 박준영

서울특별시 서대문구 연세로 50 연세대학교 한전 산학협동연구관 424호

## 배수한

서울특별시 서대문구 연세로 50 연세대학교 ABMRC 224호

## 박정수

서울특별시 서대문구 연세로 50 연세대학교 ABMRC 309호

## 명세서

#### 청구범위

#### 청구항 1

SEQ ID NO: 1의 염기 서열로 표시되는 RCAT(Regulator of cat) 유전자 결실 돌연변이를 포함하는 산화 스트레스 연구용 동물 모델.

#### 청구항 2

제1항에 있어서,

RCAT 유전자 결실 돌연변이는 SEQ ID NO: 2의 염기 서열로 표시되는 RCAT 유전자에서 SEQ ID NO: 4의 염기 서열로 표시되는 부위가 결실된 것인, 산화 스트레스 연구용 동물 모델.

## 청구항 3

제1항에 있어서,

동물 모델은 SEQ ID NO: 2의 염기 서열로 표시되는 RCAT 유전자를 포함하는 야생종 동물 모델 대비 ROS(Reactive Oxygen Species) 발생량이 증가된 것인, 산화 스트레스 연구용 동물 모델.

#### 청구항 4

제1항에 있어서,

동물 모델은 예쁜꼬마선충(*Caenorhabditis elegans*) RO2D3.7(ok1745); 또는 RCAT 및 Nrf2를 발현하는 인간 HEK293T 세포주인, 산화 스트레스 연구용 동물 모델.

#### 청구항 5

제4항에 있어서,

RCAT 및 Nrf2를 발현하는 인간 HEK293T 세포주는 예쁜꼬마선충(Caenorhabditis elegans) 유래의 RCAT 유전자 및 인간 Nrf2 유전자가 형질주입(transfection)된 것인, 산화 스트레스 연구용 동물 모델.

#### 청구항 6

SEQ ID NO: 2 또는 3의 염기 서열로 표시되는 RCAT(Regulator of cat) 유전자 또는 이로부터 코딩되는 단백질을 포함하는 항산화용 조성물.

#### 청구항 7

SEQ ID NO: 1의 염기 서열로 표시되는 RCAT(Regulator of cat) 유전자 결실 돌연변이를 포함하는 산화 스트레스 연구용 동물 모델과 항산화 후보 약물을 접촉시키는 단계; 및

상기 동물 모델에서 ROS(Reactive Oxygen Species) 발생량의 감소 여부를 확인하는 단계를 포함하는 항산화 약물의 스크리닝 방법.

#### 청구항 8

제7항에 있어서,

동물 모델은 예쁜꼬마선충(Caenorhabditis elegans) RO2D3.7(ok1745)인, 항산화 약물의 스크리닝 방법.

#### 발명의 설명

#### 기술분야

[0001] 본 발명은 예쁜꼬마선충 내 산화 스트레스 조절자에 대한 제어 기능을 갖는 알캣(RCAT) 유전자에 대한 결손 돌연변이종과 RCAT 유전자를 형질주입한 인간세포주를 이용하여 산화 스트레스 연구를 위한 동물 모델로 활용하는 내용에 관한 것이다.

#### 배경기술

- [0003] 예쁜꼬마선충(Caenorhabditis elegans)은 흙에서 서식하며, 몸의 크기는 1 mm 정도이고, 다세포 생물 중에서 가장 먼저 DNA 염기서열이 분석된 생물이다. 사람과 유사한 19,000 여 개의 유전자를 가지고 있으며, 정상적인 조건에서의 평균 수명은 2-3주 정도로 짧아 배양이 쉽고, 몸이 투명하고 체세포와 신경세포의 개수가 각각 1,000 개와 320개 정도로 적어 각종 질환모델로 적합하게 활용되고 있다.
- [0004] 산화 스트레스는 생체내 물질대사나 세균감염 및 중금속 등에 의해 생성되어 대사질환, 퇴행성 뇌신경질환, 노화, 암 및 당뇨 등 다양한 질환의 병인이 되고 있다. 사람을 포함한 동물의 산화 스트레스의 해독과정에는 마스터 전사조절인자로 잘 알려진 Nrf2/SKN-1이 세포 방어기능을 수행하는 데, 그 중요성 때문에 많은 연구가 진행중에 있으나, Nrf2/SKN-1를 누가, 어떻게, 언제 조절하는지에 대한, 소위 '조절자의 조절'과 같은 연구는 Nrf2/SKN-1 돌연변이종(대부분은 배아치사-embryonic lethal)이나 관련 유전변이 환자의 부재로 연구 방법상 한계에 부딪혀 있었던 것이 사실이다.

## 선행기술문헌

#### 비특허문헌

[0006] (비특허문헌 0001) Kampkotter, A. et al. Arch Toxicol 81, 849-858. (2007)

(비특허문헌 0002) Lee, D.H. et al. BMB Rep. 50(2): 91-96. (2017)

#### 발명의 내용

## 해결하려는 과제

- [0007] 본 발명의 목적은 RCAT(Regulator of *cat*) 유전자 결실 돌연변이와 RCAT 유전자의 형질주입을 포함하는 산화 스트레스 연구용 동물 모델을 제공하는 것이다.
- [0008] 본 발명의 다른 목적은 RCAT의 항산화 용도를 제공하는 것이다.
- [0009] 본 발명의 또 다른 목적은 상기 동물 모델을 이용하여 항산화 약물을 스크리닝하는 방법을 제공하는 것이다.

## 과제의 해결 수단

[0011] 상기 목적을 달성하기 위해, 본 발명은 SEQ ID NO: 1의 염기 서열로 표시되는 RCAT(Regulator of *cat*) 유전자 결실 돌연변이를 포함하는 산화 스트레스 연구용 동물 모델을 제공한다.

- [0012] 본 발명은 또한 SEQ ID NO: 2 또는 3의 염기 서열로 표시되는 RCAT(Regulator of *cat*) 유전자 또는 이로부터 코딩되는 단백질을 포함하는 항산화용 조성물을 제공한다.
- [0013] 본 발명 또한 SEQ ID NO: 1의 염기 서열로 표시되는 RCAT(Regulator of *cat*) 유전자 결실 돌연변이를 포함하는 산화 스트레스 연구용 동물 모델과 항산화 후보 약물을 접촉시키는 단계; 및
- [0014] 상기 동물 모델에서 ROS(Reactive Oxygen Species) 발생량의 감소 여부를 확인하는 단계를 포함하는 항산화 약물의 스크리닝 방법을 제공한다.

#### 발명의 효과

- [0016] 본 발명에 따르면 RCAT 유전자 결실 돌연변이를 포함하는 RCAT 돌연변이종은 ROS(Reactive Oxygen Species) 발생량이 증가되어 있어 산화 스트레스 연구를 위한 동물 모델로 사용할 수 있을 뿐만 아니라 항산화 약물의 스크리닝에 사용할 수 있다.
- [0017] 본 발명에 따르면 예쁜꼬마선충(Caenorhabditis elegans)의 RCAT 및 Nrf2로 형질주입된 인간 HEK293T 세포주는 예쁜꼬마선충 RCAT의 작용에 의하여 항산화인자 Nrf2의 전사활성이 증가되어 있어 산화 스트레스 연구를 위한 동물 모델로 사용할 수 있을 뿐만 아니라 항산화 약물의 스크리닝에 사용할 수 있다.

#### 도면의 간단한 설명

[0019] 도 1은 RCAT 돌연변이종(ok1745)의 유전자 결손부위를 야생종(도 1의 왼쪽: SEQ ID NO: 2) 및 RCAT 돌연변이종 (도 1의 오른쪽: SEQ ID NO: 1)과 비교한 결과를 보여준다. 해당 도면은 wormbase.org의 자료를 차용하였다.

도 2는 DCFDA 분석을 통해 ROS(reactive oxidative species) 수준이 예쁜꼬마선충(*Caenorhabditis elegans*) RCAT 결손 돌연변이중에서 특이적으로 높은 것을 확인할 수 있는 결과를 나타낸 것으로, 초록색 형광이 많을수록 ROS 수준이 증가했다는 의미이다.

도 3은 Q-RT-PCR를 통해 SKN-1과 그 하위에 GCS-1, GST-4와 같은 산화 스트레스에 활성화되는 해독 (detoxification) 유전자들이 예쁜꼬마선충(*Caenorhabditis elegans*) RCAT 결손 돌연변이종에서는 감소하고 RCAT을 과발현시킨 돌연변이에서는 다시 증가하는 것을 보여주는 도식표이다. RCAT의 존재 여부에 따라 SKN-1과 해독 유전자들의 수준이 직접적으로 조절되는 것을 확인해주고 있다.

도 4는 인간 HEK293T 세포주에 형질주입시킨 pcDNA3.1-HA-RCAT 중 벡터와 RCAT과의 접합 부분인 HA-RCAT 부분을 도시한 것이다. 해당 도면은 Snapgene(GSL Biotech, CA, USA) 프로그램을 사용하여 제작하였다.

도 5는 인간 HEK293T 세포주에 FLAG-태그된 Keap1과 HA-태그된 RCAT을 발현시킨 후 두 단백질이 실제로 결합하는지를 면역침전(IP) 실험을 통해 관찰한 결과이다. 왼쪽이 HA-항체를 이용하여 IP를 한 결과이고 오른쪽이 FLAG 항체를 이용한 IP 결과이다. 두 실험 모두에서 Keap1과 RCAT 모두 검출되어 두 단백질이 물리적으로 결합한다는 것을 확인할 수 있다.

도 6은 인간 HEK293T 세포주에서 RCAT의 작용에 의해 실제로 유리 Nrf2가 발생하고 이들이 핵으로 진입하는지를 웨스턴 블랏으로 관찰한 결과이다.

도 7은 인간 HEK293T 세포주에서 RCAT에 의한 Nrf2의 전사촉진(transactivation) 활성에 대한 루시퍼레이즈 리포터 분석 결과이다.

#### 발명을 실시하기 위한 구체적인 내용

- [0020] 이하, 본 발명의 구성을 구체적으로 설명한다.
- [0021] 본 발명은 SEQ ID NO: 1의 염기 서열로 표시되는 RCAT(Regulator of *cat*) 유전자 결실 돌연변이를 포함하는 산화 스트레스 연구용 동물 모델에 관한 것이다.
- [0022] 상기 RCAT(Regulator of cat)은 예쁜꼬마선충의 도파민 대사 관련 효소 유전자들인 cat-1과 cat-2의 전사발현을 억제하는 기능을 가진 유전자인 RO2D3.7을 속칭하는 것으로 이것의 생물학적 기능, 작용기전 및 인간질환과의 연관성 및 이를 이용한 활용도는 아직 잘 규명되어 있지 않다. 본 발명자들은 RCAT의 cat-1 또는 cat-2의 전사

조절능을 발견하고 이에 근거해 RO2D3.7을 RCAT(Regulator of cat)으로 명명하였다.

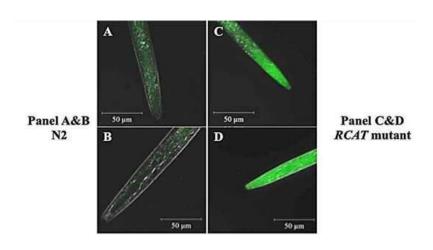
- [0023] RCAT 유전자 결실 돌연변이는 상기 SEQ ID NO: 2의 염기 서열에서 시작 코돈을 포함한 5개의 엑손 및 일부 프로 모터 지역이 결손된 것으로 상기의 결실 부위는 SEQ ID NO: 4의 염기 서열로 표시될 수 있다. 바람직하게는, RCAT 유전자 결실 돌연변이는 SEQ ID NO: 1의 염기 서열로 표시될 수 있다.
- [0024] 본 발명의 일 구체예에 따르면, 예쁜꼬마선충(Caenorhabditis elegans)의 비-도파민 세포에서 상기 RCAT 돌연변 이종은 ROS를 더 많이 발생하였다(도 2). 또한, 이러한 ROS 발생과 관련한 산화 스트레스 관련 전사인자인 예쁜 꼬마선충의 SKN-1(사람의 Nrf2의 homolog)이 조절한다고 알려진 산화 스트레스 관련 유전자들의 발현이 야생종 보다 RCAT 돌연변이종에서 줄어들었고, 해당 발현 감소 현상이 과발현종에서 일부 회복되는 것을 발견하였다(도 3).
- [0025] 사람의 Nrf2는 정상상황에서는 Keap1과 결합하여 분해되며 산화 스트레스를 받았을 때 둘간의 결합이 떨어지면 서 자유로워진 Nrf2가 핵으로 진입하여 산화 스트레스 관련 유전자들의 전사를 조절한다고 알려져 있다.
- [0026] RCAT과 Nrf2/SKN-1의 작용이 예쁜꼬마선충(*C. elegans*) 뿐만이 아니라 인간 세포주에서도 발생하는지 알아보기 위해 인간 HEK293T 세포주에 RCAT과 Nrf2를 발현시켜서 상호작용을 관찰한 결과, RCAT이 첨가된 경우 Keap1은 Nrf2 대신 RCAT과 결합하고 그에 따라서 자유롭게 핵으로 진입하는 Nrf2가 많이 발생하는 것을 발견하였다(도 5 및 도 6).
- [0027] 또한, 인간 HEK293T 세포주에서 RCAT이 Keap1과 결합하여 Keap1을 분해시킴으로써, Nrf2에 의한 Nqo-1의 전사촉 진 활성을 증가시킴을 관찰하였다(도 7).
- [0028] 따라서, RCAT은 항산화성 Nrf2/SKN-1를 세포 특이적으로 조절하는 인자이며, RCAT 결실 돌연변이종은 ROS 발생 량이 야생종에 비해 증가되어 있어 산화 스트레스를 연구하는데 동물 모델로서 수많은 연구에 도움을 줄 수 있다.
- [0029] 따라서, 상기 동물 모델은 RCAT 유전자 결실 돌연변이를 포함하는 예쁜꼬마선충(Caenorhabditis elegans) 돌연 변이종; 또는 RCAT 및 Nrf2를 발현하는 인간 HEK293T 세포주일 수 있다.
- [0030] 상기 RCAT 유전자 결실 돌연변이를 포함하는 예쁜꼬마선충(Caenorhabditis elegans) 돌연변이종은 야생종 예쁜 꼬마선충(Caenorhabditis elegans)과 비교하여 ROS(Reactive Oxygen Species) 발생량이 증가된 것일 수 있다. 바람직하게는, 상기 동물 모델은 예쁜꼬마선충(Caenorhabditis elegans) RO2D3.7(ok1745)일 수 있다.
- [0031] 또한, 상기 RCAT 및 Nrf2를 발현하는 인간 HEK293T 세포주는 예쁜꼬마선충(Caenorhabditis elegans)의 RCAT 유전자 및 NrF2 유전자로 형질주입된 인간 HEK293T 세포주일 수 있다. 상기 인간 HEK293T 세포주는 예쁜꼬마선충 RCAT의 작용에 의하여 항산화인자 Nrf2의 전사활성을 증가시킬 수 있다.
- [0032] 본 발명의 일 구체예에서, 상기 RCAT 유전자는 SEQ ID NO: 3의 염기 서열로 표시되는 RCAT cDNA를 발현 벡터에 삽입시킨 후 인간 HEK293T 세포주로의 형질주입을 통해 발현될 수 있다. 구체적으로, Flag-Keap1(Addgene, MA, USA); pCDNA3-Myc3-Nrf2(Addgene, MA, USA); pcDNA3.1-HA-RCAT; pcDNA3.1-HA (Addgene, MA, USA)에 예쁜꼬마 선충 RCAT cDNA를 접합시켜 제작된 발현 벡터 pCDNA3.1-HA-RCAT를 인간 HEK293T 세포주에 형질주입시켜 제조될 수 있다.
- [0033] 본 발명에서 용어 "동물 모델"은 인간의 질병의 특징을 유사하게 표현하고 있는 동물을 말하는데, 이는 실험이 어려운 연구와 치료법 개발에 사용될 수 있는 것을 의미한다.
- [0034] 본 발명은 또한 SEQ ID NO: 2 또는 3의 염기 서열로 표시되는 RCAT(Regulator of *cat*) 유전자 또는 이로부터 코딩되는 단백질을 포함하는 항산화용 조성물에 관한 것이다.
- [0035] 사람을 포함한 동물의 산화 스트레스의 해독과정에는 마스터 전사조절인자로 잘 알려진 Nrf2/SKN-1이 세포 방어 기능을 수행한다. 정상상황에서는 Keap1과 결합하여 분해되며 산화 스트레스를 받았을 때 둘간의 결합이 떨어지 면서 자유로워진 Nrf2가 핵으로 진입하여 산화 스트레스 관련 유전자들의 전사를 조절한다고 알려져 있다.
- [0036] 본 발명 활용의 구체예에 따르면, RCAT과 Nrf2/SKN-1의 작용이 예쁜꼬마선충(*C. elegans*) 뿐만이 아니라 인간 세포주에서도 발생하는지 알아보기 위해 HEK293T 세포주에 RCAT과 Nrf2를 발현시켜서 상호작용을 관찰한 결과, RCAT이 첨가된 경우 Keapl은 Nrf2 대신 RCAT과 결합하고 그에 따라서 자유롭게 핵으로 진입하는 Nrf2가 많이 발생하는 것을 발견하였다. 또한, 인간 HEK293T 세포주에서 RCAT이 Keapl과 결합하여 Keapl을 분해 시킴으로써, Nrf2에 의한 Nqo-1의 전사촉진 활성을 증가시킴을 관찰하였다. 따라서, 비-도파민 세포에서 RCAT은 항산화성

Nrf2/SKN-1를 세포 특이적으로 조절하는 인자이므로 항산화용 조성물에 사용될 수 있다.

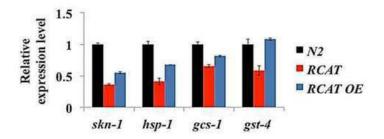
- [0037] 본 발명은 또한 SEQ ID NO: 1의 염기 서열로 표시되는 RCAT(Regulator of *cat*) 유전자 결실 돌연변이를 포함하는 산화 스트레스 연구용 동물 모델과 항산화 후보 약물을 접촉시키는 단계; 및
- [0038] 상기 동물 모델에서 ROS(Reactive Oxygen Species) 발생량의 감소 여부를 확인하는 단계를 포함하는 항산화 약물의 스크리닝 방법에 관한 것이다.
- [0039] 본 발명의 동물 모델은 RCAT 유전자 결실 돌연변이종으로서, ROS 발생량이 증가되어 있는 것을 특징으로 한다. 따라서, 항산화 후보 약물과 RCAT 돌연변이종을 접촉시켜 상기 RCAT 돌연변이종의 ROS 발생량이 감소하는 후보약물에 대해 항산화 약물로 선별할 수 있다. 바람직하게는, 상기 동물 모델은 예쁜꼬마선충(Caenorhabditis elegans) RO2D3.7(ok1745)일 수 있다.
- [0040] 상기 항산화 후보 약물은 단백질, 펩타이드, 소형 유기 분자, 다당류, 폴리뉴클레오티드 및 광범위한 화합물 등의 임의분자를 포함할 수 있다. 이러한 후보물질은 또한 천연물질뿐만 아니라, 합성물질도 포함한다.
- [0041] 이하, 본 발명에 따르는 실시예 통하여 본 발명을 보다 상세히 설명하나, 본 발명의 범위가 하기 제시된 실시예 에 의해 제한되는 것은 아니다.
- [0042] <실시예 1> 예쁜꼬마선충(C. elegans) RCAT 돌연변이종의 특성 규명
- [0043] 1. 균주
- [0044] 본 실험에 사용된 예쁜꼬마선충의 종은 다음과 같다: 야생종: 브리스톨(Bristol) (N2종); RCAT [RO2D3.7(ok1745)]; RCAT OE [RO2D3.7::GFP, rol-6]
- [0045] 달리 명시하지 않는 한, 예쁜꼬마선충은 표준 방법을 사용하여 20℃에서 OP50을 함유한 고체 선충류 성장 배지 (NGM)에서 배양되었고, 동조배양은 이전에 기술된 바와 같이 성체(gravid adult)에 차아염소산염을 처리하여 제조되었다(Brenner, S. Genetics 77, 71-94, 1974).
- [0046] 2. ROS 분석
- [0047] 예쁜꼬마선충 야생종 및 돌연변이종에서의 ROS 발생 수준 측정은 2,7-dicholorodihydro-fluorescein-diaceate (DCFDA)를 사용하여 측정하였다. 상기 ROS 측정 방법은 이전에 확립된 프로토콜에 따라 수행되었다 (Kampk ф tter, A. et al. Arch Toxicol 81, 849-858. 2007).
- [0048] 3. 공초점 현미경 분석
- [0049] 동기화된 L3 스테이지의 벌레에 50 mM sodium azide를 첨가하고 5 분 동안 배양했다. 각 조건 별 처리된 벌레들을 현미경 관찰을 위해 유리 슬라이드 위 3 % 한천 위에 놓았다. 형광 관찰은 FITC 필터가 탑재된 LSM700 공 초점 현미경 (ZEISS, Jena, Germany)을 사용했다. 모든 이미지는 8 비트이며 ZEN Black 소프트웨어 (ZEISS)를 사용하여 분석되었다.
- [0050] 4. RNA 추출 및 cDNA 합성
- [0051] 동기화된 L3 스테이지의 벌레를 NGM 플레이트 상에서 인큐베이션 하고, S-basal로 3회 및 물로 1회 세척하여 수집하였다. 트리졸을 펠렛에 첨가하고, 질소 가스로 냉동시켰다. 클로로포름을 첨가하여 단백질 및 다른 불순물을 제거하고, 이소프로필 알코올로 RNA를 침전시켰다. RNA 농도는 ND-1000 분광계로 측정하였다. cDNA는 GE health 키트를 이용하여 합성하였다. cDNA를 추가로 정제하고 ND-1000 분광계를 이용하여 측정하였다.
- [0052] 5. 정량적 RT-PCR
- [0053] 총 RNA는 RNAspin mini columns(GE healthcare, UK)을 사용하여 매뉴얼에 기재된 대로 샘플로부터 분리되었고, 수동으로 제공된 2µg의 RNA는 oligoDT priming과 함께 Transcriptor First Standard cDNA 합성 키트(Roche, IN, USA)를 사용하여 전사되었다. qRT-PCR은 제조업체의 매뉴얼에 따라 SYBR Green PCR Master Mix(Qiagen)를 사용하여 수행되었다.
- [0055] <실시예 2> 인간 세포주에서의 RCAT 특성 규명
- [0056] 1. 세포주

- [0057] HEK293T 세포(한국 세포주 은행, 21573)는 10% 소태아혈청(Hyclone, SV30087.02), 1 % 페니실린-스트렙토마이 신(Biowest, L0022)이 첨가된 덜베코 변형 이글 배지(DMEM; Hyclone, HS3243.01)에서 37℃ 5% CO₂ 조건에서 유지, 배양되었다. 세포주에 형질주입시킨 발현 벡터들은 다음과 같다: Flag-Keap1(Addgene, MA, USA); pCDNA3-Myc3-Nrf2(Addgene, MA, USA); pcDNA3.1-HA-RCAT; 발현 벡터 pCDNA3.1-HA-RCAT는 pcDNA3.1-HA (Addgene, MA, USA)에 예쁜꼬마선충 RCAT cDNA를 접합시켜 제작하였다. 해당 발현 벡터의 접합 부위는 도 4에 기재된다. 상기 발현 벡터에 삽입된 RCAT cDNA 서열은 SEQ ID NO: 3에 기재되었다.
- [0058] 2. 면역블랏 분석
- [0059] 면역침전(IP)을 위해, HEK293T 세포는 라이시스 버퍼(50 mM tris-HC1(pH 7.5), 125 mM NaCl, 1 mM 페닐메틸설 포닐 플루오라이드(PMSF), 10% 글리세롤, 0.3% tritonX-100, 1 mM 에틸렌디아민테트라아세트산(EDTA), 0.5% Nonidet P-40 (NP-40), 10 mM β-포스포글리세라이드, 1 mM Na<sub>3</sub>VO<sub>4</sub>, 5 mM NaF 및 1 mg/mL의 아프로티닌 및 류펩틴 포함)에서 용해시켰다. 세포 용해물을 원심분리하고, 생성된 상등액에 대해 단백질 G-세파로스 비드를 이용하여 FLAG, HA 또는 Myc에 대한 항체로 IP를 적용하였다.
- [0060] 면역블랏을 위해, 세포 용해물 또는 면역침전물에 대해 소듐 도데실 설페이트 폴리아크릴아마이드 젤 전기영동을 수행하고, 분리된 단백질을 폴리비닐리덴 디플루오라이드 멤브레인으로 옮기고 1차 항체와 4℃에서 오버나이트동안 인큐베이션 하고 나서, 호스래디쉬 페록시데이즈-컨쥬게이트 된 2차 항체와 실온에서 1시간 동안 인큐베이션 하였다. 증강된 화학발광 라이트닝 용액(Thermo Fisher Scientific)을 사용하여 시각화하였다.
- [0061] 3. 루시퍼레이즈 리포터 분석
- [0062] 루시퍼레이즈 분석 Nrf2 활성은 항산화 반응 요소(antioxidant response element, ARE), 캐노니컬 Nrf2 결합 모티프를 포함하는 리포터 플라스미드의 형질감염 후 듀얼 루시퍼레이즈에 의해 측정되었다. HEK293T 세포는 pNqo1-ARE 리포터 플라스미드(H.-S. Choi로부터 제공받음) 및 pRL-TK(내인성 대조군, Promega)과 함께 RCAT, Keapl 및 Nrf2에 대한 발현 벡터로 24시간 동안 형질감염되었다. 그리고 나서, 세포에서 듀얼 루시퍼레이즈 리포터 유전자 분석 시스템(Promega)을 사용하여 루시퍼레이즈 활성을 분석하였다.
- [0064] <실험예 1> RCAT(ok1745) 균주의 ROS와의 연관성 규명
- [0065] 도 1은 RCAT 돌연변이종(ok1745)의 유전자 결손부위를 야생종(도 1의 왼쪽: SEQ ID NO: 2) 및 RCAT 돌연변이종 (도 1의 오른쪽: SEQ ID NO: 1)과 비교한 결과를 보여준다. 해당 도면은 wormbase.org의 자료를 차용하였다.
- [0066] 또한, RCAT의 항산화 효과를 알아보기 위해 정상 야생종과 RCAT 돌연변이종에서의 ROS 발생량을 DCFDA 어세이를 이용하여 측정한 결과, 도 2에 나타난 바와 같이, RCAT 돌연변이종에서 ROS가 더 많이 발생하는 것을 확인하였다.
- [0067] 또한, 이러한 ROS 발생이 산화 스트레스 관련 전사인자인 Nrf2/SKN-1와 연관되는지를 알아보기 위해 SKN-1이 조절한다고 알려진 산화 스트레스 관련 유전자들의 발현량을 QRT-PCR을 이용하여 측정하였다.
- [0068] 도 3에 나타난 바와 같이, SKN-1이 조절한다고 알려진 산화 스트레스 관련 유전자의 발현이 RCAT 돌연변이종에서 줄어들었고, 과발현종에서 회복되는 것을 발견하였다.
- [0069] 또한, 사람의 Nrf2는 정상상황에서는 Keap1과 결합하여 분해되며 산화 스트레스를 받았을 때 둘 간의 결합이 떨어지면서 자유로워진 Nrf2가 핵으로 진입하여 산화 스트레스 관련 유전자들의 전사를 조절한다고 알려져있다. RCAT과 Nrf2/SKN-1의 작용이 예쁜꼬마선충(Caenorhabditis elegans)뿐만이 아니라 인간 세포주에서도 발생하는지 알아보기 위해 HEK239T 세포주에 RCAT과 Nrf2를 발현시켜 상호작용을 관찰하였다.
- [0070] 도 5에 나타난 바와 같이, RCAT이 첨가된 경우 Keap1은 Nrf2 대신 RCAT과 결합하고 그에 따라서 자유롭게 핵으로 진입하는 Nrf2가 많이 발생하는 것을 발견하였다.
- [0071] 인간 HEK293T 세포주에서 RCAT의 작용에 의해 실제로 유리 Nrf2가 발생하고 이들이 핵으로 진입하는지를 웨스턴 블랏으로 확인하였다.
- [0072] 도 6에 나타난 바와 같이, 주입하는 RCAT의 양이 많을수록 Keap1의 검출량이 줄어드는 것을 볼 수 있는데 이것은 주입된 RCAT과의 결합에 의해 Keap1-RCAT 복합체가 분해된다는 것을 의미한다. 또한 RCAT 주입량이 많아질수록 핵에서의 Nrf2가 많이 검출되는 것을 통해 RCAT이 Nrf2 대신 Keap1과 결합하고 그에 따라 자유롭게 Nrf2가

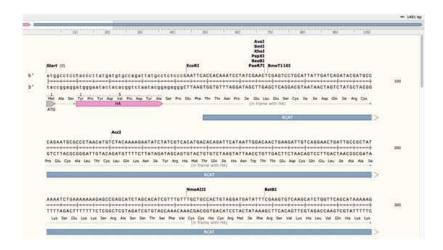
핵으로 진입한다는 것을 확인시켜주고 있다.


- [0073] 또한, 인간 HEK293T 세포주에서 RCAT에 의해 실제로 Nrf2의 전사촉진 활성이 발생하는지 알아보기 위해, HEK293T 세포주에 M-Nrf2, F-Keap1 및 H-RCAT을 루시퍼레이즈 리포터 플라스미드 pNqo-1 ARE를 발현시켰다.
- [0074] 도 7에 나타난 바와 같이, Nrf2에 의해서 Nqo-1의 전사촉진 활성이 증가하고, Nrf2 의 억제자로 알려진 Keap1에 의해서는 감소한다.
- [0075] 또한, RCAT이 Keap1과 결합하여 Keap1을 분해시킴으로써, Nrf2에 의한 Nqo-1의 전사촉진 활성을 증가시킴을 관찰하였다.

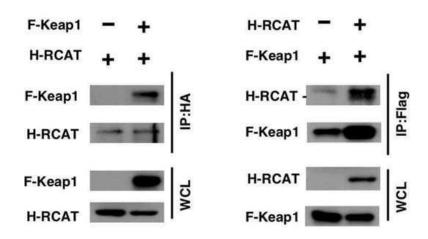
## 도면


## 도면1

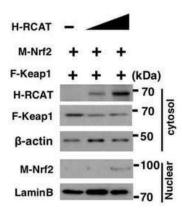



## 도면2



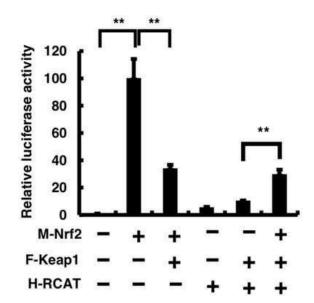

## 도면3




## 도면4



## 도면5




## 도면6



H-RACT: HA-tagged RCAT F-Keap1: FLAG-tagged Keap1 M-Nrf2: MYC-tagged Nrf2

## 도면7



H-RACT: HA-tagged RCAT F-Keap1: FLAG-tagged Keap1 M-Nrf2: MYC-tagged Nrf2

## 서 열 목 록

<110> University-Industry Foundation, Yonsei University

<120> Biological characterization of RCAT as a new regulator of anti-oxidative stress and use of model animal for those related diseases by using the same

<130> P21U16C0429

| <160> 4                                                            |      |
|--------------------------------------------------------------------|------|
| <170> KoPatent In 3.0                                              |      |
| <210> 1                                                            |      |
| <211> 2290                                                         |      |
| <212> DNA                                                          |      |
| <213> Caenorhabditis elegans                                       |      |
| <400> 1                                                            |      |
| gccaattgtg attittccag catcgtttgg tggcatcgta tccacatcaa ctacgttgat  | 60   |
| atattcatct tcttccgcag tttctgaatc cacaacttgt tcgcgatgtt ttgcagaatt  | 120  |
|                                                                    |      |
| attttctgaa gtagttgcct gaaaattcaa tttttgagtt ttcagaacaa tttaaccgtc  | 180  |
| tgtaaacctt ttcaatgtta tcaggtttgc tttgcatcct tggaattttc gccttaacct  | 240  |
| catcatcatc ttcttctctc ggttctttcg tactatctgc agcaacggct cgccgctctt  | 300  |
| tcaaactaat cggaatcgca gaagattttg cagtgtccgt taaaaaaacca agcttctccc | 360  |
| gttctctatt gtaccgaact gtgatatttc tgcaaaaaac attatatttg cctactgttt  | 420  |
| cggatgatta ccctcaccta atatcattct ttgagatata ttttaattta cactcgtagt  | 480  |
| ccttgtactc attccgaata aagaagaaga tctgatcaga agtccatccc aagtcaatta  | 540  |
|                                                                    |      |
| gctcacgaac atattttcc tgagattcgg tgagccatag aagtttgtga tcaagatcat   | 600  |
| gtccgatatg agtaaagcat ccagttgccc aagttgaacc gtcctcttct gttgtgacct  | 660  |
| gaaatatttt tcaaaatttt aaaacaaatt ttttaaaaaa tgttttactt tcaaatatgc  | 720  |
| tgtacaagtc tggtcaatct tcctgggatt cgatttcctg gattttgcga cactttgata  | 780  |
| ctttccgaca cgatgacacc tataaagtgt ttctccagca tgtcctgtac gttttgtcaa  | 840  |
| cgatgtacat gtgtcctcct gtctctgatc gaaccattcc taaaattaga tttttgtcat  | 900  |
| tttatcgaga atatttaaaa accttaaact ggtctcttga ttggaaaaac tctcgttcta  | 960  |
|                                                                    |      |
| aattaaactt ctgatcatgg gacatgtgtt cttgacggca atgcagtaaa aattcatcca  | 1020 |
| acgactetga tgtactegaa cattegggac attttaaatt acateeaega tatttteetg  | 1080 |
| gtagttgcat taacgagaat titgaaggtt titcaataat ggtggcaatt tggctgaaaa  | 1140 |
| tcatagtttt tgacagaaac ctttatttt tctaattcca accattcctg cgttaaatga   | 1200 |
| tgtggctgga ttggacgaga agcttgtcga tgtggcggaa tattcatctc gaaactatct  | 1260 |
| ccagatgatg tggatggttt ttgtgtagat tctttagttt cattgatatc atattcattg  | 1320 |
| attocaacaa cttcttcttc tccttcaaca atcatttcat ctatataaac atcaagatgc  | 1380 |
|                                                                    |      |
| tagttetaat etteoegite ttoograpa otateooga tagattit statttagt       | 1440 |

tcgttgtcat gttgcggttg ttcagtgcac atctgcaaga tccaattttt atatttagtt

1440

| ttccagaaga atagggttgt attacctttt tatgctgaac cagatgcttg | acacttcgaa | 1500 |
|--------------------------------------------------------|------------|------|
| atatcatcct acagtggcag caaacaaacg atgtgctaga tgctcggctc | ttttttcag  | 1560 |
| attttatage ggcaatcagt teetgacaat etteagttgt ecaattatga | atctgtgtca | 1620 |
| tgtgacgata gatattcttt tgtagacatg ttagggcgca ttctgggcat | cgtatctgat | 1680 |
| caataatgca ggactcgagt tcgataggat ttgtggtcat ttcctgcaat | tttcaaacat | 1740 |
| ttctatatcc ggaagtgaaa aatacgtgtt ttcaaggatt atcagttcca | gaaaaattgg | 1800 |
|                                                        |            |      |
| cattcacttt tgtgaatttt tttgcgttaa attctaaaag tttatggaaa | attgacaaaa | 1860 |
| atcagaggaa aatagaaaat taaaacgatt ggtaggattt acgctcgtaa | atcctgtcac | 1920 |
| ttcgacgcgt cgcgtgttcg cgttgcgtgt ctgcaagtcc gctccattgc | agagaacttt | 1980 |
| aagcgcgatg tttgaaataa tattttttgt gtcttataaa gctttattaa | atacaactga | 2040 |
| agttgcaatt ttttttcaga ttggaccgag agagaaaact ttttatgaat | attttcaagc | 2100 |
| ggttaaaaaa tcaatttaaa agggaagaaa gtggcgaaac ttcttcagtg | tgtagacttc | 2160 |
| ctcatggcgg agagaattga cagattaaaa cttccaaaaa aatctaattt | ctagaaacgt | 2220 |
|                                                        |            |      |
| atacgtgaaa ctgtacttgc aattcgatat tctcgctata ttttttgcaa | agatttattg | 2280 |
| ttctgaacgg                                             |            | 2290 |
| <210> 2                                                |            |      |
| <211> 3460                                             |            |      |
| <212> DNA                                              |            |      |
| <213> Caenorhabditis elegans                           |            |      |
| <400> 2                                                |            |      |
| ttgaaatatc ataaatcttg tcaggcagct gtgccgaaaa aattgttttt | taatctacga | 60   |
| aaatatcgaa attgtttccc gtaaatcgac aaggggctga ggtttctaga | ccacacggcc | 120  |
| gtgtactcct ctcggacaat ggattaattt tatctgctat aattttattt | ttcgattttc | 180  |
| acacgttttc cagtcaaatt tcgtaatatt tcataatttt ttatcattta | agactcgaaa | 240  |
|                                                        |            |      |
| atgtcgataa acttcacgag gacaccaaga ttattacttg acacagtagg | taattccatt | 300  |
| tttctagttt ttttcgaatt taaataatta aagttaattt cagcccatta | ctcatcattc | 360  |
| ttggaaagca caaagcttgt aaagactcgg gaagtgaaga aaccacccag | atatccaaac | 420  |
| ttttcactga aaaaagatac gaaaagtggg gagattgctt actttttggc | aaaataactt | 480  |
| tattttaatc ttttcagatc aaaaaatgag ccagcacttt gattatcttc | tagtattaga | 540  |
| cttcgaagcc acgtgtcaag ataactggaa agggccgatg catccagtcc | aagaaatcat | 600  |
| cgaattccca gtggtccagc tctcgacggc tgattggagt gaaattcgtc | gttttcatca | 660  |
|                                                        |            |      |

| atacgttaag ccgacggaat gtccaaggct | cacatctttc  | tgcacatctt | taacaggaat | 720          |
|----------------------------------|-------------|------------|------------|--------------|
| tattcaggtt tttaatgcaa aaatttcgag | gaaaaaatgc  | taaaattcca | ggaaatggtt | 780          |
| gacgaaaaac cgacgcttcc acaagtttta | tcggaatttg  | atagctggct | gaaagaggat | 840          |
| tctcgactgg aaaagggcaa atttgcattc | gtcacttgtg  | gagattggga | tctgaaagtc | 900          |
| gcgctgccga atgaggcgaa atttaagaat | attggaattc  | cagagtaaat | tttttagagt | 960          |
| aaaactgaca atttgaggct gaaaattcgt | acaatttgac  | tctaaaaatc | tgaaatttca | 1020         |
| ttaaaaaaca atcatttttg tcccacgaac | cgcacaaatc  | caaacaaatt | gtccttcagg | 1080         |
|                                  |             |            |            |              |
| tacttcaatc aatggatcaa cgtgaaaaag | gcttctgcgg  | agcacacaaa | tcatttcgcg | 1140         |
| aaaggaatag cccagcttct ggccatctac | aagctgcaac  | atcaggtttt | ctactgaaat | 1200         |
| tctgaaatct cagcaaaatt ctaattttcc | agggt cgcca | ccacagtgga | attgatgacg | 1260         |
| tggcaaatat ctgcgaaatt gtccggtgtt | tgggcatgaa  | cgggcacaac | tatcaaatca | 1320         |
| caggetecaa agacacaatg acgeggaggg | tgttcagaga  | tgcgaggaaa | taatttttgt | 1380         |
| cgatttttca gcaatatgta ttaatacgaa | atattgactt  | ttccgccatt | tttccgttca | 1440         |
| gaacaataaa tctttgcaaa aaatatagcg | agaatatcga  | attgcaagta | cagtttcacg | 1500         |
|                                  |             |            |            |              |
| tatacgtttc tagaaattag atttttttgg | aagttttaat  | ctgtcaattc | tctccgccat | 1560         |
| gaggaagtet acacactgaa gaagtttege |             |            |            | 1620         |
| accgcttgaa aatattcata aaaagttttc |             |            | -          | 1680         |
| acttcagttg tatttaataa agctttataa |             |            |            | 1740         |
| cttaaagttc tctgcaatgg agcggacttg |             |            |            | 1800         |
| gaagtgacag gatttacgag cgtaaatcct |             |            |            | 1860         |
| gatttttgtc aattttccat aaacttttag |             |            |            | 1920         |
|                                  | G           |            |            |              |
|                                  | maaaaaaaa   |            | taammatata | 1000         |
| atgccaattt ttctggaact gataatcctt |             |            |            | 1980         |
| gaaatgtttg aaaattgcag gaaatgacca |             |            |            | 2040         |
| ttgatcagat acgatgccca gaatgcgccc |             |            |            | 2100<br>2160 |
| acatgacaca gattcataat tggacaactg |             |            |            |              |
| aatctgaaaa aaagagccga gcatctagca |             |            |            | 2220         |
| tatttcgaag tgtcaagcat ctggttcagc |             |            |            | 2280         |
| gaaaactaaa tataaaaatt ggatcttgca | gatgtgcact  | gaacaaccgc | aacatgacaa | 2340         |
|                                  |             |            |            |              |
| cgagcatctt gatgtttata tagatgaaat | gattgttgaa  | ggagaagaag | aagttgttgg | 2400         |
| aatcaatgaa tatgatatca atgaaactaa | agaatctaca  | caaaaaccat | ccacatcatc | 2460         |
| gccaattgtg atttttccag catcgtttgg | tggcatcgta  | tccacatcaa | ctacgttgat | 2520         |

| atattcatct tcttccgcag tttctgaatc cacaacttgt tcgcgatgtt ttgcagaatt  | 2580 |
|--------------------------------------------------------------------|------|
| attttctgaa gtagttgcct gaaaattcaa tttttgagtt ttcagaacaa tttaaccgtc  | 2640 |
| tgtaaacctt ttcaatgtta tcaggtttgc tttgcatcct tggaattttc gccttaacct  | 2700 |
| catcatcatc ttcttctctc ggttctttcg tactatctgc agcaacggct cgccgctctt  | 2760 |
|                                                                    |      |
| tcaaactaat cggaatcgca gaagattttg cagtgtccgt taaaaaaacca agcttctccc | 2820 |
| gttctctatt gtaccgaact gtgatatttc tgcaaaaaac attatatttg cctactgttt  | 2880 |
| cggatgatta ccctcaccta atatcattct ttgagatata ttttaattta cactcgtagt  | 2940 |
| ccttgtactc attccgaata gaaaaattgg cattcacttt tgtgaatttt tttgcgttaa  | 3000 |
| attctaaaag tttatggaaa attgacaaaa atcagaggaa aatagaaaat taaaacgatt  | 3060 |
| ggtaggattt acgctcgtaa atcctgtcac ttcgacgcgt cgcgtgttcg cgttgcgtgt  | 3120 |
| ctgcaagtcc gctccattgc agagaacttt aagcgcgatg tttgaaataa tatttttgt   | 3180 |
|                                                                    |      |
| gtcttataaa gctttattaa atacaactga agttgcaatt ttttttcaga ttggaccgag  | 3240 |
| agagaaaact ttttatgaat attttcaagc ggttaaaaaa tcaatttaaa agggaagaaa  | 3300 |
| gtggcgaaac ttcttcagtg tgtagacttc ctcatggcgg agagaattga cagattaaaa  | 3360 |
| cttccaaaaa aatctaattt ctagaaacgt atacgtgaaa ctgtacttgc aattcgatat  | 3420 |
| tetegetata tittitgeaa agaittaitg tietgaaegg                        | 3460 |
| <210> 3                                                            |      |
| <211> 1440                                                         |      |
| <212> DNA                                                          |      |
| <213> Artificial Sequence                                          |      |
| <220><223> RCAT cDNA                                               |      |
| <400> 3                                                            |      |
| atgaccacaa atcctatcga actcgagtcc tgcattattg atcagatacg atgcccagaa  | 60   |
|                                                                    |      |
| tgcgccctaa catgtctaca aaagaatatc tatcgtcaca tgacacagat tcataattgg  | 120  |
| acaactgaag attgtcagga actgattgcc gctataaaat ctgaaaaaaa gagccgagca  | 180  |
| tetageacat egittgitig etgecacigi aggatgatat itegaagigi caagealeig  | 240  |
| gttcagcata aaaagatgtg cactgaacaa ccgcaacatg acaacgagca tcttgatgtt  | 300  |
| tatatagatg aaatgattgt tgaaggagaa gaagaagttg ttggaatcaa tgaatatgat  | 360  |
| atcaatgaaa ctaaagaatc tacacaaaaa ccatccacat catctggaga tagtttcgag  | 420  |
| atgaatattc cgccacatcg acaagcttct cgtccaatcc agccacatca tttaacgcag  | 480  |
|                                                                    |      |
| gaatgccaaa ttgccaccat tattgaaaaa ccttcaaaat tctcgttaat gcaactacca  | 540  |
|                                                                    | ==   |

| ggaaaatatc gtggatgtaa tttaaaatgt cccgaatgtt cgagtacatc agagtcgttg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 600                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| gatgaatttt tactgcattg ccgtcaagaa cacatgtccc atgatcagaa gtttaattta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 660                                          |
| gaacgagagt ttttccaatc aagagaccag tttaaggaat ggttcgatca gagacaggag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 720                                          |
| gacacatgta catcgttgac aaaacgtaca ggacatgctg gagaaacact ttataggtgt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 780                                          |
| catcgtgtcg gaaagtatca aagtgtcgca aaatccagga aatcgaatcc caggaagatt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 840                                          |
| gaccagactt gtacagcata tttgaaagtc acaacagaag aggacggttc aacttgggca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 900                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |
| actggatgct ttactcatat cggacatgat cttgatcaca aacttctatg gctcaccgaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 960                                          |
| tctcaggaaa aatatgttcg tgagctaatt gacttgggat ggacttctga tcagatcttc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1020                                         |
| ttctttattc ggaatgagta caaggactac gagtgtaaat taaaatatat ctcaaagaat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1080                                         |
| gatattagaa atatcacagt teggtacaat agagaacggg agaagettgg tiitttaacg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1140                                         |
| gacactgcaa aatettetge gatteegatt agtttgaaag ageggegage egttgetgea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1200                                         |
| gatagtacga aagaaccgag agaagaagat gatgatgagg ttaaggcgaa aattccaagg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1260                                         |
| atgcaaagca aacctgataa cattgaaaag gcaactactt cagaaaataa ttctgcaaaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1320                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |
| catcgcgaac aagttgtgga ttcagaaact gcggaagaag atgaatatat caacgtagtt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1380                                         |
| gatgtggata cgatgccacc aaacgatgct ggaaaaatca caattggctt aaatttttag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1440                                         |
| gargissara chargeeace adacsarger spandadrea charrisgeri adarrirrag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1440                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |
| <210> 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1440                                         |
| <210> 4<br><211> 1290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1440                                         |
| <211> 1290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1440                                         |
| <211> 1290<br><212> DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1440                                         |
| <211> 1290<br><212> DNA<br><213> Artificial Sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1440                                         |
| <211> 1290<br><212> DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1440                                         |
| <211> 1290<br><212> DNA<br><213> Artificial Sequence<br><220><223> ok1745 deletion region<br><400> 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| <211> 1290 <212> DNA <213> Artificial Sequence <220><223> ok1745 deletion region <400> 4 aagaagaaga tctgatcaga agtccatccc aagtcaatta gctcacgaac atatttttcc                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60                                           |
| <211> 1290<br><212> DNA<br><213> Artificial Sequence<br><220><223> ok1745 deletion region<br><400> 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| <211> 1290 <212> DNA <213> Artificial Sequence <220><223> ok1745 deletion region <400> 4  aagaagaaga tctgatcaga agtccatccc aagtcaatta gctcacgaac atatttttcc tgagattcgg tgagccatag aagtttgtga tcaagatcat gtccgatatg agtaaagcat                                                                                                                                                                                                                                                                                                                                                                                       | 60<br>120                                    |
| <pre>&lt;211&gt; 1290 &lt;212&gt; DNA &lt;213&gt; Artificial Sequence &lt;220&gt;&lt;223&gt; ok1745 deletion region &lt;400&gt; 4  aagaagaaga tctgatcaga agtccatccc aagtcaatta gctcacgaac atattttcc tgagattcgg tgagccatag aagtttgtga tcaagatcat gtccgatatg agtaaagcat  ccagttgccc aagttgaacc gtcctcttct gttgtgacct gaaatattt tcaaaatttt</pre>                                                                                                                                                                                                                                                                       | 60<br>120<br>180                             |
| <pre>&lt;211&gt; 1290 &lt;212&gt; DNA &lt;213&gt; Artificial Sequence &lt;220&gt;&lt;223&gt; ok1745 deletion region &lt;400&gt; 4  aagaagaaga tctgatcaga agtccatccc aagtcaatta gctcacgaac atattttcc tgagattcgg tgagccatag aagtttgtga tcaagatcat gtccgatatg agtaaagcat  ccagttgccc aagttgaacc gtcctcttct gttgtgacct gaaatattt tcaaaatttt aaaacaaatt ttttaaaaaa tgttttactt tcaaatatgc tgtacaagtc tggtcaatct</pre>                                                                                                                                                                                                     | 60<br>120<br>180<br>240                      |
| <pre>&lt;211&gt; 1290 &lt;212&gt; DNA &lt;213&gt; Artificial Sequence &lt;220&gt;&lt;223&gt; ok1745 deletion region &lt;400&gt; 4  aagaagaaga tctgatcaga agtccatccc aagtcaatta gctcacgaac atattttcc tgagattcgg tgagccatag aagtttgtga tcaagatcat gtccgatatg agtaaagcat  ccagttgccc aagttgaacc gtcctcttct gttgtgacct gaaatattt tcaaaatttt aaaacaaatt ttttaaaaaa tgttttactt tcaaatatgc tgtacaagtc tggtcaatct tcctgggatt cgatttcctg gattttgcga cactttgata ctttccgaca cgatgacacc</pre>                                                                                                                                   | 60<br>120<br>180<br>240<br>300               |
| <pre>&lt;211&gt; 1290 &lt;212&gt; DNA &lt;213&gt; Artificial Sequence &lt;220&gt;&lt;223&gt; ok1745 deletion region &lt;400&gt; 4  aagaagaaga tctgatcaga agtccatccc aagtcaatta gctcacgaac atattttcc tgagattcgg tgagccatag aagtttgtga tcaagatcat gtccgatatg agtaaagcat  ccagttgccc aagttgaacc gtcctcttct gttgtgacct gaaatattt tcaaaatttt aaaacaaatt ttttaaaaaa tgttttactt tcaaatatgc tgtacaagtc tggtcaatct tcctgggatt cgatttcctg gattttgcga cactttgata ctttccgaca cgatgacacc tataaagtgt ttctccagca tgtcctgtac gttttgtcaa cgatgtacat gtgtcctct</pre>                                                                  | 60<br>120<br>180<br>240<br>300<br>360        |
| <pre>&lt;211&gt; 1290 &lt;212&gt; DNA &lt;213&gt; Artificial Sequence &lt;220&gt;&lt;223&gt; ok1745 deletion region &lt;400&gt; 4  aagaagaagaa tctgatcaga agtccatccc aagtcaatta gctcacgaac atattttcc tgagattcgg tgagccatag aagttgtga tcaagatcat gtccgatatg agtaaagcat  ccagttgccc aagttgaacc gtcctcttct gttgtgacct gaaatattt tcaaaatttt aaaacaaatt ttttaaaaaa tgttttactt tcaaatatgc tgtacaagtc tggtcaatct tcctgggatt cgatttcctg gattttgcga cactttgata ctttccgaca cgatgacacc tataaagtgt ttctccagca tgtcctgtac gttttgtcaa cgatgtacat gtgtcctct gtcttgatc gaaccattcc taaaattaga tttttgtcat tttatcgaga atatttaaaa</pre> | 60<br>120<br>180<br>240<br>300<br>360<br>420 |
| <pre>&lt;211&gt; 1290 &lt;212&gt; DNA &lt;213&gt; Artificial Sequence &lt;220&gt;&lt;223&gt; ok1745 deletion region &lt;400&gt; 4  aagaagaaga tctgatcaga agtccatccc aagtcaatta gctcacgaac atattttcc tgagattcgg tgagccatag aagtttgtga tcaagatcat gtccgatatg agtaaagcat  ccagttgccc aagttgaacc gtcctcttct gttgtgacct gaaatattt tcaaaatttt aaaacaaatt ttttaaaaaa tgttttactt tcaaatatgc tgtacaagtc tggtcaatct tcctgggatt cgatttcctg gattttgcga cactttgata ctttccgaca cgatgacacc tataaagtgt ttctccagca tgtcctgtac gttttgtcaa cgatgtacat gtgtcctct</pre>                                                                  | 60<br>120<br>180<br>240<br>300<br>360        |

| cattegggae attttaaatt acateeacga tatttteetg gtagttgeat taacgagaat | 600  |
|-------------------------------------------------------------------|------|
| tttgaaggtt tttcaataat ggtggcaatt tggctgaaaa tcatagtttt tgacagaaac | 660  |
| ctttattttt tctaattcca accattcctg cgttaaatga tgtggctgga ttggacgaga | 720  |
| agcttgtcga tgtggcggaa tattcatctc gaaactatct ccagatgatg tggatggttt | 780  |
| ttgtgtagat tctttagttt cattgatatc atattcattg attccaacaa cttcttcttc | 840  |
| tccttcaaca atcatttcat ctatataaac atcaagatgc tcgttgtcat gttgcggttg | 900  |
| ttcagtgcac atctgcaaga tccaattttt atatttagtt ttccagaaga atagggttgt | 960  |
|                                                                   |      |
| attacctttt tatgctgaac cagatgcttg acacttcgaa atatcatcct acagtggcag | 1020 |
| caaacaaacg atgtgctaga tgctcggctc tttttttcag attttatagc ggcaatcagt | 1080 |
| tcctgacaat cttcagttgt ccaattatga atctgtgtca tgtgacgata gatattcttt | 1140 |
| tgtagacatg ttagggcgca ttctgggcat cgtatctgat caataatgca ggactcgagt | 1200 |
| tcgataggat ttgtggtcat ttcctgcaat tttcaaacat ttctatatcc ggaagtgaaa | 1260 |
| aatacgtgtt ttcaaggatt atcagttcca                                  | 1290 |