

(19) 대한민국특허청(KR)

(12) 공개특허공보(A)

(51) 국제특허분류(Int. Cl.)

A61K 31/436 (2006.01)A61K 31/4725 (2006.01)A61K 31/497 (2006.01)A61K 31/519 (2006.01)A61K 31/5377 (2006.01)

(52) CPC특허분류

A61K 31/436 (2013.01) **A61K** 31/4725 (2013.01)

(21) 출원번호 10-2020-0105574(분할)

(22) 출원일자 **2020년08월21일**

심사청구일자 없음

(62) 원출원 특허 10-2019-0101251

원출원일자 **2019년08월19일** 심사청구일자 **2019년08월19일**

(30) 우선권주장

1020150031606 2015년03월06일 대한민국(KR)

(11) 공개번호 10-2020-0102976

(43) 공개일자 2020년09월01일

(71) 출원인

한국과학기술원

대전광역시 유성구 대학로 291(구성동)

연세대학교 산학협력단

서울특별시 서대문구 연세로 50 (신촌동, 연세대 학교)

(72) 발명자

이정호

대전광역시 유성구 대학로 291 (구성동)

임재석

대전광역시 유성구 상대로 16 (상대동)

(뒷면에 계속)

(74) 대리인

유미특허법인

전체 청구항 수 : 총 11 항

(54) 발명의 명칭 mTOR 억제제를 포함하는 난치성 뇌전증의 예방 또는 치료용 조성물

(57) 요 약

본 발명은 난치성 뇌전증, 예를 들면 국소 피질 이형성증(focal cortical dysplasia, FCD)의 예방, 개선 또는 치료에 관한 것이다.

대 표 도 - 도3a

(52) CPC특허분류

강훈철

A61K 31/497 (2013.01) **A61K 31/519** (2013.01)

서울특별시 서초구 잠원로14길 48(잠원동)

A61K 31/5377 (2013.01)

(72) 발명자

김우일

대전광역시 유성구 궁동

김동석

서울특별시 서대문구 통일로34길 43, 103동 704호 (홍제동, 홍제원현대아파트)

이 발명을 지원한 국가연구개발사업

과제고유번호 04120790 부처명 보건복지부

과제관리(전문)기관명 한국보건산업진흥원 연구사업명 질환극복기술개발

연구과제명 차세대 염기서열 분석법을 응용한 난치성 소아 뇌전증의 새로운 원인 유전변이 발굴

기 여 율 1/3

과제수행기관명 한국과학기술원

연구기간 2012.12.01 ~ 2015.10.31

이 발명을 지원한 국가연구개발사업

과제고유번호 04130226 부처명 보건복지부

과제관리(전문)기관명 한국보건산업진흥원 연구사업명 질환극복기술개발

연구과제명 ciliopathy 질환에서 발생하는 뇌신경 기능 이상의 분자 유 전학적 원인 규명

기 여 율 1/3

과제수행기관명 한국과학기술원

연구기간 2012.11.01 ~ 2015.10.31

이 발명을 지원한 국가연구개발사업

과제고유번호 01130718 부처명 미래창조과학부 과제관리(전문)기관명 한국연구재단

연구사업명 뇌과학원천기술개발

연구과제명 차세대 염기서열 분석법을 응용한 mTOR 신호 전달계 관련 대뇌피질 발달 장애 제어

인자 발굴 및 조기 진단 유전자 패널 개발

기 여 율 1/3

과제수행기관명 한국과학기술원

연구기간 2013.08.01 ~ 2016.07.31

명세서

청구범위

청구항 1

mTOR 저해제로서 에베로리무스 (Everolimus) 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 포함하는, 대상의 2형 국소 피질 이형성증 (FCD type II형) 또는 2형 국소 피질 이형성증에 의한 증상의 예방, 개선 또는 치료용 약학 조성물.

청구항 2

제1항에 있어서, 상기 2형 국소 피질 이형성증은 뇌 체성 변이에 의한 것인 약학 조성물.

청구항 3

제1항에 있어서, 상기 대상은 뇌 체성 변이를 가지며, 상기 뇌 체성 변이에 의한 mTOR 과활성화 특성을 갖는 것 인 약학 조성물.

청구항 4

제1항에 있어서, 상기 대상은 인산화된 S6 단백질을 포함하는 뇌 신경세포의 수가 증가하는 특성을 갖는 것인약학 조성물.

청구항 5

제2항 또는 제3항에에 있어서, 상기 뇌 체성 변이는 mTOR, TSC1, TSC2, AKT3, 또는 PIK3CA 단백질 또는 상기 단백질을 암호화하는 핵산분자에서 일어난 뇌 체성 변이인 약학 조성물.

청구항 6

제1항에 있어서, 상기 2형 국소 피질 이형성증에 의한 증상은, 자발적 발작, 행동발작, 뇌파 발작, 또는 대뇌에서 비정상적인 신경 세포의 발생인 것인 약학 조성물.

청구항 7

제1항에 있어서, 상기 약학 조성물은 뇌혈관내 (intracerebroventricular) 주사용인 것인 약학 조성물.

청구항 8

제2항에 있어서, 상기 뇌 체성 유전변이는 서열번호 2의 아미노산 서열에 있어서 206번, 624번, 1450번, 1483번, 1709번, 1977번, 2193번, 2215번, 2427번, 및 2427번,

서열번호 4의 아미노산 서열에 있어서 22번, 204번, 및 811번,

서열번호 6의 아미노산 서열에 있어서 1547번,

서열번호 8의 아미노산 서열에 있어서 247번 , 및

서열번호 10의 아미노산 서열에 있어서 1018번 아미노산에서 일어나는 치환으로 이루어진 군에서 선택되는 하나 이상의 변이를 포함하는 것인, 조성물.

청구항 9

제2항에 있어서, 상기 뇌 체성 변이는,

서열번호 2의 아미노산 서열에 있어서, 206번 알지닌(R)이 시스테인(C)로 치환, 624번 알지닌(R)이 히스티딘(H)으로 치환, 1450번 티로신(Y)이 아스파트 산(D)으로 치환, 1483번 위치의 시스테인(C)이 알지닌(R)으로 치환, 1709번 알지닌(R)이 히스티딘(H)으로 치환, 1977번 트레오닌(T)이 리신(K)으로 치환, 2193번 알지닌(R)이 시스테인(C)으로 치환, 2215번 세린(S)이 페닐알라닌(F)으로 치환, 2427번 위치의 루신(L)이 프롤린(P)으로 치

환, 및 2427번 위치의 루신(L)이 글루타민(Q)으로 치환,

서열번호 4의 아미노산 서열에 있어서 22번 알지닌(R)이 트립토판(W)으로 치환, 204번 알지닌(R)이 시스테인 (C)으로 치환, 811번 알지닌(R)이 루신(L)으로 치환,

서열번호 6의 아미노산 서열에 있어서 1547번 발린(V)이 이소루신(I)으로 치환,

서열번호 8의 아미노산 서열에 있어서, 247번 알지닌(R)이 히스티딘(H)으로 치환, 및

서열번호 10의 아미노산 서열에 있어서, 1018번 아스파르트산(D)이 아스파라긴(N)으로 치환으로 이루어진 군에서 선택되는 하나 이상의 변이를 포함하는, 약학 조성물.

청구항 10

제2항에 있어서, 상기 뇌 체성 변이는,

서열번호 1의 염기서열에 있어서, 616번 위치의 시토신(C)이 타민(T)으로 치환, 1871번 위치의 구아닌(G)이 아데닌(A)으로 치환, 4348번 위치의 타민(T)이 구아닌(G)으로 치환, 4447번 위치의 타민(T)이 시토신(C)으로 치환, 5126번 위치의 구아닌(G)이 아데닌(A)으로 치환, 5930번 위치의 시토신(C)이 아데닌(A)으로 치환, 6577번 위치의 시토신(C)이 타민(T)으로 치환, 6644번 위치의 시토신(C)이 타민(T)으로 치환, 7280번 위치의 타민(T)이 아데닌(A)으로 치환, 및 7280번 위치의 타민(T)이 시토신(C)으로 치환,

서열번호 3의 염기서열에 있어서 64번 시토신(C)이 티민(T)으로 치환, 610번 시토신(C)이 티민(T)으로 치환, 2432번 구아닌(G)이 티민(T)으로 치환,

서열번호 5의 염기 서열에 있어서 4639번째 구아닌이 아데닌(A)으로 치환,

서열번호 7의 염기 서열에 있어서, 740번째 구아닌(G)이 아데닌(A)으로 치환, 및

서열번호 9의 염기 서열에 있어서, 3052번 구아닌(G)이 아데닌(A)으로 치환으로 이루어진 군에서 선택되는 하나이상의 변이를 포함하는, 약학 조성물.

청구항 11

제1항에 있어서, 상기 조성물은 약학적으로 허용되는 담체, 부형제, 안정화제, 계면활성제, 껠화제, pH 조절제, 항산화제 및 보존제로 이루어진 군에서 선택된 화합물을 추가적으로 포함하는 약학 조성물.

발명의 설명

기 술 분 야

[0001] 본 발명은 난치성 뇌전증, 예를 들면 국소 피질 이형성증(focal cortical dysplasia, FCD)의 예방, 개선 또는 치료에 관한 것이다.

배경기술

- [0002] 뇌전증(epilepsy)은 신경세포 중 일부가 짧은 시간에 과도한 전기를 발생시켜 반복적으로 발작이 발생하는 만성화된 질환군으로서, 신경생물학적, 정신적, 인지적, 사회적 변화를 수반하는 심각한 신경 질환이다.
- [0003] 뇌전증 중에서 현재까지 개발된 항뇌전증 약물에 반응하지 않는 뇌전증을 난치성 뇌전증(intractable epileps y)이라고 하며, 전체 뇌전증의 약 20%를 차지하고 있다. 난치성 뇌전증의 원인질환으로는, 국소 피질 이형성증 (focal cortical dysplasia, FCD), 편측 거대뇌증(hemimegalencephaly, HME) 및 결절성 경화증(Tuberous sclerosis complex, TSC)과 같은 대뇌피질 발달기형(Malformations of Cortical Developments, MCD), 해마경화 증(hippocampal sclerosis, HS), 또는 스터지웨버신드롬(Sturge weber syndrome, SWS) 등이 알려져 있다.
- [0004] 난치성 뇌전증은 현재 존재하는 항뇌전증 약물에 반응 하지 않아, 뇌전증 조절을 위하여 뇌 병변을 절제하는 뇌 신경외과적 처리(neurosurgical treatment)를 필요로 하므로, 난치성 뇌전증을 유발하는 대뇌피질 발달기형 또는 해마경화증에 특이적인 분자생물학적 진단 기술의 개발이 필요하다.
- [0005] 항전간제로 조절되지 않는 난치성 뇌전증의 중요한 원인중 하나로 국소 피질 이형성증이 있으며. 이는 뇌전증으

로 인해 수술받은 환자의 50%에 이른다. 국소 피질 이형성증은 산발적으로 발생하는 대뇌피질 발달 기형 중 하나로 영향받은 부위의 대뇌피질의 구조적 이상과 신경세포의 세포학적 이상을 동반한다.

- [0006] 국소 피질 이형성증의 외과적 절제는 60%의 환자를 발작으로부터 자유롭게 하지만, 여전히 많은 환자에게서 수술 후에도 간질발작이 지속되는 문제점이 있다. 또한, 국소 피질 이형성증의 분자유전학적 원인이 밝혀져 있지 않기 때문에 새롭고 효과적인 국소 피질 이형성증 치료법의 개발이 어려운 실정이다. 그 동안 많은 연구를 통해 국소 피질 이형성증이 대뇌 발달 중 체성 유전변이의 영향으로 인해 발생한다는 가설이 세워졌지만, 아직까지 이러한 체성 유전변이가 확인된 바는 없다.
- [0007] 국소 피질 이형성증은 병리학적 기준에 의해 몇 가지 형태로 구분된다. 이 중 FCDII는 균일한 병리적 소견으로 보이는데 피질 층형성 이상과 이상신경세포(dysmorphic neuron) 또는 풍선 세포(balloon cell)을 확인할 수 있다(Epilepsia 52, 158-174 (2011)). 뇌전증 수술을 받는 FCD 환자의 29 내지 39%가 FCDII에 해당한다(Brain 129, 1907-1916 (2006)). 인유두종바이러스(Human papiloma virus)와 FCDII의 연관성이 보고되기는 하였지만, FCDII의 분자유전학적 원인은 아직까지 이해가 부족한 실정이다. 흥미롭게도 FCDII 환자의 뇌자기공 명영상은 때때로 정상소견을 보이지만 수술한 조직의 현미경 검사를 시행하면 많은 정상세포에 둘러쌓인 이상신 경세포들이 관찰된다. 이러한 방사선학적, 조직병리학적 소견을 종합해볼 때, 수술한 조직에 체성유전변이를 포함한 신경세포가 매우 적게 포함되어 있을 가능성이 있지만, 이러한 저빈도의 체성유전변이는 고전적인 생어 시퀀싱(sanger sequencing)이나 read depth 100~150x의 전형적인 전체 엑솜 염기서열 분석법(whole exome sequencing)으로는 효과적으로 발견하기 어렵다.
- [0008] 이러한 배경 하에, 본 발명자들은 국소 피질 이형성증 수술 환자의 뇌 조직 시료(brain tissue)에 대하여, 전체 엑솜 염기서열 분석법, 하이브리드 캡쳐 염기서열 분석법(hybrid capture sequencing), 앰플리콘 염기서열 분석법(amplicon sequencing)의 다양한 deep sequecing 기법을 사용하여 국소 피질 이형성증의 뇌 병변 특이적 체성 유전 변이를 발굴하였고, 이러한 체성 유전 변이를 이용하여 국소 피질 이형성증을 나타내는 형질전환 동물을 확립하였으며, 상기 형질동물에 mTOR 억제제를 투여하는 경우 우수하게 국소 피질 이형성증에 대한 증상이억제될 수 있음을 확인하여 본 발명을 완성하였다.

발명의 내용

해결하려는 과제

- [0009] 본 발명의 목적은, mTOR 저해제를 유효성분으로 포함하는, PI3K-AKT-mTOR 신호전달경로에 관련된 유전자의 뇌체성변이에 의한 난치성 뇌전증, 또는 국소 피질 이형성증(FCD), 편측 거대뇌증(HME), 해마경화증(HS) 또는 스터지웨버신드롬(SWS)으로 인한 난치성 뇌전증의 예방, 개선 또는 치료용 키트, 또는 방법을 제공하는 것이다.
- [0010] 본 발명의 추가 목적은 mTOR 저해제를 유효성분으로 포함하는, 뇌전증 또는 뇌전증의 원인질환의 예방, 개선, 또는 치료 용도에 관한 것으로서, 난치성 뇌전증은 국소 피질 이형성증에 의한 것일 수 있으며, 자세하게는 국소 피질 이형성증은 뇌 체성 유전 변이 연관 국소 피질 이형성증일 수 있다.
- [0011] 본 발명의 또 다른 목적은 PI3K-AKT-mTOR 신호전달경로에 관련된 유전자의 뇌 체성변이에 의한 난치성 뇌전증, 또는 국소 피질 이형성증(FCD), 편측 거대뇌증(HME), 해마경화증(HS) 또는 스터지웨버신드롬(SWS)으로 인한 난 치성 뇌전증의 예방, 개선 또는 치료에 관한 약학 조성물 또는 식품 조성물을 제공하는 것이다.

과제의 해결 수단

- [0012] 본 발명의 목적은 mTOR 저해제를 유효성분으로 포함하는, 뇌전증 또는 뇌전증의 원인질환의 예방, 개선, 또는 치료 용도에 관한 것으로서, 난치성 뇌전증은 국소 피질 이형성증에 의한 것일 수 있으며, 자세하게는 국소 피질 이형성증은 뇌 체성 유전 변이 연관 국소 피질 이형성증일 수 있다.
- [0013] 이하, 본 발명을 더욱 자세히 설명하고자 한다.
- [0014] 본 발명자들은 국소 피질 이형성증(FCD), 편측 거대뇌증(HME), 해마경화증(HS) 또는 스터지웨버신드롬(SWS)으로 인한 난치성 뇌전증 수술 환자의 뇌 조직 시료를 분석한 결과, PI3K-AKT-mTOR 신호전달경로에 관여하는 유전자들의 뇌 체성 변이가 특이적으로 존재한다는 것을 확인하였고, 이들 변이들이 난치성 뇌전증을 진단하기 위한 바이오마커 패널로 활용될 수 있음을 확인하였다. 나아가, 본 발명자들은 상기 변이체를 세포에 도입할 경우 mTOR이 과활성화되므로 난치성 뇌전증이 유발될 수 있음을 확인하여 국소 피질 이형성증(FCD), 결절성 경화증, 편측 거대뇌증(HME), 해마경화증(HS) 또는 스터지웨버신드롬(SWS)으로 인한 난치성 뇌전증의 예방, 개선 또는

치료와, 이들 난치성 뇌전증의 원인 질환인 국소 피질 이형성증(FCD), 결절성 경화증(TSC), 편측 거대뇌증 (HME), 해마경화증(HS) 또는 스터지웨버신드롬(SWS)의 예방, 개선 또는 치료 용도를 개발하여 본 발명을 완성하였다.

[0016] *본 발명자들은 국소 피질 이형성증으로 인한 난치성 뇌전증 수술 환자로부터 뇌 조직, 타액, 혈액 시료를 확보하였고, 염기서열 분석을 통하여, 상기 국소 피질 이형성증으로 인한 난치성 뇌전증 환자들에 특이적으로 존재하는 mTOR 유전자의 유전 변이 및 이에 의한 mTOR 단백질 변이 각 10종과 PI3K-AKT-mTOR 신호전달경로에 관여하는 유전자 변이 및 이에 의한 단백질 변이 6종을 확인하였다 (표 1).

₮ 1

[0017]

			班 1	
순번	유전자	mTOR 유전자	mTOR 단백질	비고
	종류	변이	변이	
1	mTOR	C616T	R206C	616번 위치의 시토신(C) -> 티민(T)
				206번 알지닌(R)-> 시스테인(C)
2	mTOR	G1871A	R624H	1871번 구아닌(G) -> 아데닌(A)
				624번 알지닌(R)-> 히스티딘(H)
3	mTOR	T4348G	Y1450D	4348번 티민(T) -> 구아닌(G)
				1450번 타이로신(Y) -> 아스파트산(D)
4	mTOR	T4447C	C1483R	447번 티민(T) -> 시토신(C)
				483번 시스테인(C) -> 알지닌(R)
5	mTOR	G5126A	R1709H	126번 구아닌(G) -> 아데닌(A)
				1709번 알지닌(R) -> 히스티딘(H)
6	mTOR	C5930A	T1977K	5930번 시토신(C) -> 아데닌(A)
				1977번 트레오닌(T) -> 라이신(K)
7	mTOR	C6577T	R2193C	6577번 시토신(C) -> 티민(T)
				2193번 알지닌(R) -> 시스테인(C)
8	mTOR	C6644T	S2215F	6644번 시토신(C) -> 티민(T)
				2215번 세린(S) -> 페닐알라닌(F)
9	mTOR	T7280C	L2427P	7280번 티민(T) -> 시토신(C)
				2427번 루신(L) -> 프롤린(P)
10	mTOR	T7280A	L2427Q	7280번 티민(T)-> 아데닌(A)
				427번 루신(L) -> 글루타민(Q)
11	TSC1	C64T	R22W	64번 시토신(C) -> 티민(T)
				22번째 알지닌(R)-> 트립토판(W)
12	TSC1	C610T	R204C	610번 시토신(C) ->티민(T)
				204번째 알지닌(R) -> 시스테인(C)
13	TSC1	G2432T	R811L	2432번 구아닌(G)-> 티민(T)
				811번째 알지닌(R)-> 루신(L)
14	TSC2	G4639A	V1547I	4639번째 구아닌(G) -> 아데닌(A)
				1547번째 발린(V) ->이소루신(I)
15	AKT3	G740A	R247H	740번째 구아닌(G)->아데닌(A)
				247번째 알지닌(R) -> 히스티딘(H)
16	PIK3CA	G3052A	D1018N	3052번 구아닌(G) ->아데닌(A)
				1018번 아스파르트산(D) ->아스파라긴(N)

[0018] 상기 mTOR 변이는 타액에서는 발견되지 않았고, 뇌 조직 시료에서 특이적으로 발견되었다. 또한, 국소 피질 이 형성증 환자 시료에 상기 10종의 유전 변이 중 1종 또는 그 이상이 존재하는 것을 확인하였고, 유전변이율은 1.26%에서 12.6%까지 비율로 존재하는 것도 확인하였다.본 발명의 구체적인 실시예에서는, 상기 유전변이를 발현할 수 있는 mTOR 변이체 작제물(mTOR mutant construct)을 제조하여, 세포에 형질도입(transfection) 시켜 mTOR 단백질 활성 변화를 알 수 있는 S6 단백질의 인산화 및 mTOR 인산화효소 활성을 측정하였다. 그 결과 mTOR 단백질 활성 변화를 알 수 있는 S6 단백질의 인산화가 증가하고 (도 2a), mTOR 인산화효소 활성이 증가하는 것을 확인하였다 (도 2b). 이를 통해, mTOR 단백질이 과잉활성화(hyperactivation)되어 인산화된 S6 단백질이 증

가하는 것을 확인하였다.또한, 상기 mTOR 변이체 작제물이 도입되어 mTOR 단백질이 과잉활성화된 세포에 라파마이신, 에베로리무스, 화학식 1 내지 4의 화합물을 처리한 경우, 증가된 S6 단백질의 인산화가 저해되는 것을 확인하였다(도 9a 내지 도 9c).

- [0019] 한편, 본 발명에서 제공하는 mTOR 변이가 국소 피질 이형성증을 유발한다는 것은, 국소 피질 이형성증에 의한 난치성 뇌전증 환자(mTOR 유전변이 확인)의 뇌 병리학 샘플에서 인산화된 S6 단백질의 증가와 신경세포의 크기가 크게 증가한 것(도 2c 내지 2e), 그리고 mTOR 변이체 작제물을 배아기 14일째 주입한 마우스의 대뇌 피질에서 신경 세포의 이동에 심각한 장애가 발생하고 인산화된 S6 단백질이 크게 증가하는 것(도 11b, 11c)에 의하여다시 한 번 확인되었다.
- [0020] 이에, 본 발명의 또 다른 실시예에서는, 상기 유전변이를 발현할 수 있는 mTOR 변이체 작제물을 배아기 14일 (E14)의 배아 마우스의 측뇌실에 전기천공한 배아를 태어나게 한 후, 생후 3주 이후부터 비디오 뇌전도(Video-Electroencephalography, video-EEG) 감시를 시행한 결과, 본 발명의 염기서열 변이가 일어난 mTOR 변이 유전 자를 삽입한 플라스미드를 주입한 마우스에서 간질파를 동반한 자발적 발작을 확인하였고(도 12a 및 12b), 나아 가, mTOR 변이체 작제물을 전기천공한 대뇌영역의 GFP 양성세포의 세포크기가 매우 증가되어있어 거대 신경세포 와 같은 비정상적인 신경세포 형태를 보이는 것을 확인하였다(도 3d).
- [0021] 또한, 자발적 발작 또는 비정상적 신경 세포를 나타내는 상기 동물모델에 대하여 라파마이신을 투여한 경우, 행동발작과 뇌파발작 횟수가 감소하였고(도 3c), 비정상적인 신경 세포의 크기가 감소하는 것을 확인하였다(도 3d).
- [0022] 이와 같이, 본 발명에서는 상기 유전변이가 일어난 유전자 또는 아미노산 서열에 변이가 일어난 단백질이 국소 피질 이형성증 환자 시료에서 특이적으로 검출될 뿐만 아니라, 상기 변이들이 국소 피질 이형성증을 유발할 수 있음을 입증하였다. 아울러, 본 발명에서는 mTOR 저해제, 예를 들면 라파마이신, 에베로리무스, 화학식 1 내지 4의 화합물이 상기 mTOR 변이와 연관된 난치성 뇌전증, 예컨대 국소 피질 이형성증에서 mTOR 단백질의 과잉활성화, 자발적 발작, 행동발작, 뇌파 발작 및 비정상적인 신경 세포 발생 등을 완화시킬 수 있음을 입증하였다.
- [0023] 본 발명의 구체적인 실시예에서는, 상기 체성 변이를 각각 발현할 수 있는 변이체 작제물(mTOR mutant construct)을 제조하여, 세포에 형질도입(transfection)하였으며, 그 결과 mTOR 단백질 활성 변화를 알 수 있는 S6K 단백질의 인산화가 증가하고, 라파마이신 처리 후에는 인산화가 감소하였음을 확인하였다. 이러한 결과는, 위와 같은 변이가 일어난 mTOR, TSC1, TSC2, AKT3 및 PIK3CA 유전자 또는 단백질이 mTOR 신호전달계를 활성화시킬 수 있음을 보여주는 결과이며 이에 따라 뇌전증을 유발할 수 있음을 시사하는 것이다.
- [0024] 상기 변이를 포함하는 mTOR, TSC1, TSC2, AKT3 및 PIK3CA 유전자 또는 단백질을 난치성 뇌전증 진단을 위한 바이오마커 패널 유전자 또는 단백질로 제공한다. 또한, 본 발명은 개체의 시료로부터 상기 바이오마커 패널 유전자 또는 단백질을 검출하기 위한 진단 키트 및 이를 이용한 진단 방법을 제공한다. 나아가, 본 발명은 상기 유전 변이 및 단백질 변이를 이용하여 난치성 뇌전증을 유발함으로써 뇌전증 모델을 구축하는 기술을 제공한다.
- [0025] 본 발명은 난치성 뇌전증의 예방, 개선 또는 치료와 이들 난치성 뇌전증의 원인 질환인 국소 피질 이형성증, 편 즉 거대뇌증 및 결절성 경화증과 같은 대뇌피질 발달기형, 해마경화증, 또는 스터지웨버신드롬의 예방, 개선 또는 치료용 조성물, 키트, 또는 방법을 제공하는 것이다. 바람직하게는, 상기 난치성 뇌전증은 뇌 체성 유전 변이 연관 난치성 뇌전증에 관한 예방, 치료 및/또는 개선 용도에 관한 것이다.
- [0026] 구체적으로, 본 발명에 따른 상기 난치성 뇌전증은 PI3K-AKT-mTOR 신호전달경로에 관여하는 유전자의 뇌 체성 유전변이에 의한 뇌전증, 또는 국소 피질 이형성증, 편측 거대뇌증 및 결절성 경화증과 같은 대뇌피질 발달기형, 해마경화증, 또는 스터지웨버신드롬에 의한 뇌전증을 포함한다.
- [0027] 본 발명에서 용어 "뇌전증"이란, 신경세포 중 일부가 짧은 시간에 과도한 전기를 발생시켜 발작이 반복적으로 발생하는 만성화된 질환을 의미하며, "난치성 뇌전증"이란, 현재까지 개발된 항뇌전증 약물에 반응하지 않는 뇌전증을 의미한다. 상기 난치성 뇌전증은 국소 피질 이형성증(focal cortical dysplasia, FCD), 편측 거대뇌증 (hemimegalencephaly, HME) 및 결절성 경화증(Tuberous sclerosis complex, TSC)과 같은 대뇌피질 발달기형 (Malformations of Cortical Developments, MCD), 해마경화증(hippocampal sclerosis, HS), 또는 스터지웨버신 드롬(Sturge weber syndrome, SWS)에 의해 유발된 난치성 뇌전증일 수 있다.
- [0028] 본 발명에서 용어 "국소 피질 이형성증(focal cortical dysplasia, FCD)"이란, 대뇌 피질의 정상적인 발달과정에서 신경세포는 뇌의 한 영역에서부터 다른 영역으로 이동하여 층구조를 형성하는데, 신경세포의 부적절한 이동으로 인해 정상적인 층구조를 형성하지 못하여 발생하는 질환을 의미한다. 이는 대뇌의 전체 영역 중 일부 지

역이 정상적인 발달을 실패하는 경우 일 수 있으며, 방사선학적 영상에서 정상적으로 발달한 것처럼 보이는 지역에서도 병리적으로 일부 세포가 비정상적인 세포의 형태를 나타내어 발생하는 질환일 수 있다. 이러한, 국소피질 이형성증은 대뇌에서 산발적으로 발생하고, 이형(dysmorphic) 신경세포를 보이고 영향을 받은 부위의 충구조(lamination) 파괴를 동반할 수 있다.

- [0029] 상기 국소 피질 이형성증과 연관된 뇌 체성 유전 변이는 mTOR 유전자의 유전 변이 또는 mTOR 단백질의 아미노산 변이일 수 있다.
- [0030] mTOR(mammalian target of rapamycin) 단백질은 인간에서 FRAP1 유전자에 의해 발현되며, 기능적으로 세포 성장, 세포 증식, 세포 사망, 세포 생존, 단백질 합성 및 전사를 조절하는 세린/트레오닌 단백질 키나제 (serine/threonine protein kinase)로서, 포스파티딜이노시톨 3-인산화-관련 키나제 단백질 패밀리 (phosphatidylinositol 3-kinase-related kinase protein family)에 속한다. 본 발명에서 야생형의 mTOR 유전자의 염기 서열은 서열번호 1, mTOR 단백질의 아미노산 서열은 서열번호 2로 나타내었다.
- [0031] 본 발명에서 용어 "뇌 체성 유전 변이"란, 야생형의 유전자에서 하나 이상의 위치에서 염기서열의 변이가 일어 난 것을 의미한다. 예를 들면 mTOR, TSC1, TSC2, AKT3 및 PIK3CA 유전자 또는 이들 유전자에 상응하는 단백질의 아미노산 변이일 수 있다. 구체적인 예로서, 야생형의 mTOR 유전자인 서열번호 1의 유전자의 염기서열에 변이가 일어난 것을 의미한다. 상기 표 1에 나타낸 바와 같이, 서열번호 1의 염기서열의 616번, 1871번, 4348번, 4447번, 5126번, 5930번, 6577번, 6644번, 7280번 및 7280번으로 이루어진 군에서 선택되는 하나 이상의 염기에서 염기치환이 일어난 변이를 포함하는 염기서열로 이루어진 유전자일 수 있다.
- [0032] 또 다른 예로, 본 발명에서 뇌 체성 유전 변이는, 야생형의 mTOR 단백질인 서열번호 2의 단백질의 아미노산 서열에 변이가 일어난 것일 수 있다. 예를 들어, 서열번호 2의 아미노산 서열의 206번 위치의 알지닌(R)이 시스테인(C)로 치환, 624번 위치의 R이 H로 치환, 1450번 위치의 Y가 D로 치환, 1483번 위치의 C가 R로 치환, 1709번 위치의 R이 H로 치환, 1977번 위치의 T가 K로 치환, 2193번 위치의 R이 C로 치환, 2215번 위치의 S가 F로 치환, 2427번 위치의 L이 P로 치환, 및 2427번 위치의 L이 Q로 치환으로 이루어진 군에서 선택되는 하나 이상의 변이를 포함하는 아미노산 서열로 이루어진 단백질일 수 있다. 상기 치환된 아미노산은 서열번호 1의 염기서열에서 대응하는 위치의 염기서열 변이를 포함하는 유전자에 의해 코딩되는 것일 수 있다. 각각의 변이 염기를 포함하는 염기서열과 대응하는 아미노산 변이를 상기 표 1에 나타낸 바와 같다.
- [0033] 본 발명에서 용어 "TSC1 변이 유전자"란, 야생형의 TSC1 유전자인 서열번호 3의 유전자의 염기서열에 변이가 일어난 것을 의미한다. 바람직하게, 서열번호 3의 염기서열에 있어서, 64번째 시토신(C)이 티민(T)으로 치환, 610번째 시토신(C)이 티민(T)으로 치환, 및 2432번째 구아닌(G)이 티민(T)으로 치환으로 이루어진 군에서 선택되는하나 이상의 변이를 포함하는 염기서열로 이루어진 유전자일 수 있다.
- [0034] 본 발명에서 용어 " TSC1 변이 단백질"이란, 야생형의 TSC1 단백질인 서열번호 4의 단백질의 아미노산 서열에 변이가 일어난 것을 의미한다. 바람직하게, 서열번호 4의 아미노산 서열에 있어서, 22번째 알지닌(R)이 트립토판(W)으로 치환, 204번째 알지닌(R)이 시스테인(C)으로 치환, 및 811번째 알지닌(R)이 루신(L)으로 치환으로 이루어진 군에서 선택되는 하나 이상의 변이를 포함하는 아미노산 서열로 이루어진 단백질일 수 있다.
- [0035] 본 발명에서 용어 "TSC2 변이 유전자"란, 야생형의 TSC2 유전자인 서열번호 5의 유전자의 염기서열에 변이가 일어난 것을 의미한다. 바람직하게, 서열번호 5의 염기서열에 있어서, 4639번째 구아닌(G)이 아데닌(A)으로 치환을 포함하는 염기서열로 이루어진 유전자일 수 있다.
- [0036] 본 발명에서 용어 "TSC2 변이 단백질"이란, 야생형의 TSC2 단백질인 서열번호 6의 단백질의 아미노산 서열에 변이가 일어난 것을 의미한다. 바람직하게, 서열번호 6의 아미노산 서열에 있어서, 1547번째 발린(V)이 이소루신(I)으로 치환을 포함하는 아미노산 서열로 이루어진 단백질일 수 있다.
- [0037] 본 발명에서 용어 "AKT3 변이 유전자"란, 야생형의 AKT3 유전자인 서열번호 7의 유전자의 염기서열에 변이가 일어난 것을 의미한다. 바람직하게, 서열번호 7의 염기서열에 있어서, 740번째 구아닌(G)이 아테닌(A)으로 치환을 포함하는 염기서열로 이루어진 유전자일 수 있다.
- [0038] 본 발명에서 용어 "AKT3 변이 단백질"이란, 야생형의 AKT3 단백질인 서열번호 8의 단백질의 아미노산 서열에 변이가 일어난 것을 의미한다. 바람직하게, 서열번호 8의 아미노산 서열에 있어서, 247번째 알지닌(R)이 히스티딘(H)으로 치환을 포함하는 아미노산 서열로 이루어진 단백질일 수 있다.
- [0039] 본 발명에서 용어 "PIK3CA 변이 유전자"란, 야생형의 PIK3CA 유전자인 서열번호 9의 유전자의 염기서열에 변이

가 일어난 것을 의미한다. 바람직하게, 서열번호 9의 염기서열에 있어서, 3052번째 구아닌(G)이 아데닌(A)으로 치환을 포함하는 염기서열로 이루어진 유전자일 수 있다.

- [0040] 본 발명에서 용어 "PIK3CA 변이 단백질"이란, 야생형의 PIK3CA 단백질인 서열번호 10의 단백질의 아미노산 서열에 변이가 일어난 것을 의미한다. 바람직하게, 서열번호 10의 아미노산 서열에 있어서, 1018번째 아스파르트산(D)이 아스파라긴(N)으로 치환을 포함하는 아미노산 서열로 이루어진 단백질일 수 있다.
- [0041] 또한, 변이 단백질은, 분자의 활성을 전체적으로 변경시키지 않는 범위 내에서 추가적인 변이를 포함할 수 있다. 분자의 활성을 전체적으로 변경시키지 않는 단백질 및 펩티드에서의 아미노산 교환은 당해 분야에 공지되어 있다(H. Neurath, R. L. Hill, The Proteins, Academic Press, New York, 1979). 경우에 따라서, 상기 mTOR 변이 단백질은, 인산화(phosphorylation), 황화(sulfation), 아크릴화(acrylation), 당화(glycosylation), 메틸화(methylation), 파네실화(farnesylation) 등으로 수식(modification) 될 수도 있다.
- [0042] 본 발명에 적용 가능한 mTOR 저해제의 예는 하기 출원번호의 출원에 기재된 mTOR 저해제를 포함할 수 있다: Danaferber cancer institute의 PCT/US09/005656; Dolcetta, Diego의 US14/400469; Exelixis의 PCT/US10/030354, US13/989,366, US12/784,254, US13/322,160, US13/988,948, US13/988,903, US13/989,156, US13/989,330, PCT/US12/042582, PCT/US10/035638, PCT/US10/035639; Sanofi의 US13/381571, US14/374838; US12/199,689, US11/965,688, KR20097015914; Intellikine의 US12/586,241, Infinity Pharmaceuticals의 PCT/US09/005958, PCT/US09/005959, PCT/US09/049983, PCT/US09/049969, US14/238,426, US12/920,970, US12/920,966, US14/619556; Takeda Pharmaceutical Company Limited의 PCT/US10/000234, US12/841,940, US12/657,853, US12/657,854; S*Bio Pte Ltd의 US13/001,099; Schering Corporation의 PCT/US10/030350; The Reagents of The University of California의 EP2012175019; Xuanzhu Pharma Corporation Limited의 EP2013836950; 포항공과대학교 산학협력단의 KR20130049854; Signal RX Pharmaceuticals의 EP2009703974; Semafore Pharmaceuticals의 US11/962,612, US11/111201, US10/818,145; Kudos Pharmaceuticals의 US13/014,275, US13/307,342, US11/842,927, US11/361,599, US11/817,134, PCT/GB06/000671; AstraZeneca의 US11/667,064, US11/842,930, US11/844,092, US12/160,752, US12/170,128, US12/668,056, US12/668,059, US12/252,081, US12/301722, US12/299,369, US12/299,359, US12/441,298, US12/441,305, US12/441299, US12/441,301, US12/668,060, PCT/GB07/003414, PCT/GB07/003417, PCT/GB07/003454, PCT/GB07/003493, PCT/GB07/003497; Ariad Pharmaceuticals의 US10/862,149, US13/463,951, US14/266291; Merck Sharp & Dohme US13/263,193, US13/379,685, US13/520,274, US13/818,153, US13/818,177, US13/876,192, US14/234,837, PCT/US12/047522; Wyeth의 US12/251,712, US12/354,027, US12/470,521, US13/950,584, US13/718,928, US14/477,650, US12/470,525, US12/050,445, US12/044,500, US12/473,605, US12/276,459, US12/363,013, US12/361,607, US12/397,590, US12/473,658, US12/506,291, US12/556,833, US12/558,661; Norvartis의 US12/599,131, US12/792,471, US12/792,187, US13/073,652; F.Hoffmann-La-Roche AG의 EP2012177885, US13/738,829, US12/890,810, US13/568,707, EP2010769036, PCT/EP10/067162; Genentech Inc의 US11/951,203, US12/821,998, US12/943,284.
- [0043] 구체적으로, 본 발명에 적용 가능한 mTOR 저해제의 예는 하기의 물질명, 개발명 또는 상표명을 가지는 mTOR 저해제를 포함할 수 있다: AMG954, AZD8055, AZD2014, BEZ235, BGT226, 라파마이신, Everolimus, Sirolimus, CC-115, CC-223, LY3023414, P7170, DS-7423, OSI-027, GSK2126458, PF-04691502, PF-05212384, Temsirolimus, INK128, MLN0128, MLN1117, Ridaforolimus, Metformin, XL765, SAR245409, SF1126, VS5584, GDC0980, GSK2126458. 또한, mTOR 저해제의 추가 예는 WO2012/104776, KR 10-1472607B, WO2010/039740, US8846670, US8263633, 또는 WO2010/002954의 특허 문헌에 기재된 것일 수 있다.
- [0044] 본 발명에 따른 mTOR 저해제의 구체적인 예는, 라파마이신(Rapamycin) 또는 이의 염, 에베로리무스(Everolimus) 또는 이의 염, 화학식 1의 화합물 또는 이의 염, 화학식 2의 화합물 또는 이의 염, 화학식 3의 화합물 또는 이의 염, 및 화학식 4의 화합물 또는 이의 염으로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다.
- [0045] 본 발명에서 용어 "라파마이신(Rapamycin)"이란, 실로리무스(sirolimus)로도 알려져 있는 마크로라이드 락톤계화합물로서, 면역억제 활성을 갖고 있는 약제를 의미한다. 라파마이신은 종래 장기이식환자의 이식 거부 억제제로 상품화되어 있고, 이외에도, 폐렴, 전신 홍반성 루푸스, 건선 등의 면역염증 피부질환, 면역염증 장질환, 안염증, 재협착, 류마티스 관절염 등의 치료제 및 항암제로 사용되고 있다. 하지만, 라파마이신이 뇌 체성 유전변이와 연관된 국소 피질 이형성증의 예방 또는 치료에 사용된 적은 전무하다.
- [0046] 본 발명에서 용어 "에베로리무스(Everolimus)"란, 신장암을 치료하기 위해 사용되는 약물로 신생혈관생성을 억

제하는 약물인 수니티닙(sunitinib)이나 소라페닙(sorafenib)과 같은 약물에 효과가 없을 때 사용되고 있다. 또한 결정성 경화증을 가진 환자 중 수술을 할 수 없는 뇌실막밑 거대세포 성상세포종을 가진 경우 사용되고 있다. 하지만, 에베로리무스가 뇌 체성 유전 변이와 연관된 국소 피질 이형성증의 예방 또는 치료에 사용된 적은 전무하다.

- [0047] 본 발명에서 "화학식 1 내지 4의 화합물"은, mTOR에 대한 억제제로 알려져 있는 화합물들이다. 하지만, 뇌 체성 유전 변이와 연관된 국소 피질 이형성증의 예방 또는 치료와의 관련성은 전혀 알려져 있지 않다.
- [0048] 본 발명에서 라파마이신, 에베로리무스 및 화학식 1 내지 4의 화합물은, 그의 유도체 또는 유사체 및 약학적으로 허용 가능한 염 또는 수화물을 모두 포함한다.
- [0049] 상기 약학적으로 허용 가능한 염 또는 수화물은 무기산 또는 유기산으로부터 유도된 염 또는 수화물 일 수 있고, 일예로, 염으로는 염산, 브롬화수소산, 황산, 인산, 질산, 아세트산, 글리콜산, 락트산, 피루브산, 말론산, 석신산, 글루타르산, 푸마르산, 말산, 만델산, 타타르산, 시트르산, 아스코빈산, 팔미트산, 말레인산, 하이드록시말레인산, 벤조산, 하이드록시벤조산, 페닐아세트산, 신남산, 살리실산, 메탄설폰산, 벤젠설폰산, 톨루엔설폰산일 수 있으나 이에 제한되지 않는다. 상기 수화물은 라파마이신, 에베로리무스 및 화학식 1 내지 4의 화합물이 물 분자와 결합하여 형성된 것을 의미할 수 있다.
- [0050] 본 발명에서 "치료"는 증상의 경감 또는 개선, 질환의 범위의 감소, 질환 진행의 지연 또는 완화, 질환 상태의 개선, 경감 또는 안정화, 부분적 또는 완전한 회복, 생존의 연장 기타 다른 이로운 치료 결과 등을 모두 포함하는 의미로 사용될 수 있다. 본 발명에서는 뇌 체성 유전 변이 연관 국소 피질 이형성증을 나타내는 환자에게 mTOR 저해제를 투여함으로써 뇌 체성 유전 변이 연관 국소 피질 이형성증과 관련된 증상을 완화, 개선, 경감 또는 치료하는 것을 포함한다.
- [0051] 상기 뇌 체성 유전 변이 연관 국소 피질 이형성증과 관련된 증상은, 뇌의 발달과정에서 신경 세포가 적절한 뇌의 지역으로의 이동에 실패하게 되어 나타나는 것으로, 자발적 발작, 행동발작, 뇌파 발작 및 대뇌에서 비정상적인 신경 세포의 발생 등을 예시할 수 있다.
- [0052] 따라서, 본 발명에서의 치료는 이러한 뇌 체성 유전 변이 연관 국소 피질 이형성증 환자에 대하여 mTOR 저해제, 예를 들면 라파마이신, 에베로리무스, 및/또는 화학식 1 내지 4의 화합물을 투여함으로써, 자발적 발작, 행동발 작 또는 뇌파 발작이 나타나는 횟수를 현저하게 경감시키고, 대뇌에서 비정상적인 신경 세포의 개수 또는 크기를 줄이는 것을 의미할 수 있다.
- [0053] 본 발명의 약학 조성물의 사용태양 및 사용방법에 따라 mTOR 저해제의 유효량은 당업자의 선택에 따라 적절히 조절하여 사용될 수 있다.
- [0054] 일예로, 상기 약학 조성물은 mTOR 저해제를 전체 조성물의 총 중량에 대하여 0.1 내지 10 중량%, 더욱 바람직하게는 0.5 내지 5 중량%의 양으로 포함할 수 있다.
- [0055] 상기 mTOR 저해제는 상기 약학 조성물 내에 단독으로 포함될 수 있으며, 또는 그 외 약리학적으로 허용 가능한 첨가제를 추가로 포함할 수 있다. 상기 약학적으로 허용 가능한 첨가제는 제제 할 시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시 벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하며, 또한, 약학적으로 허용되는 부형제로는 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 포함하나, 이에 한 정되는 것은 아니다. 즉, 본 발명의 약학 조성물에 첨가될 수 있는 약학적으로 허용 가능한 첨가제는 사용 목적에 따라서 통상의 기술자가 어려움 없이 선정하여 이루어질 수 있으며, 그 첨가량은 본 발명의 목적 및 효과를 손상시키지 않는 범위 내에서 선택될 수 있다.
- [0056] 본 발명의 약학 조성물의 환자에 대한 바람직한 투여량은 환자의 상태 및 체중, 질병의 정도, 약물형태, 투여경로 및 기간에 따라 다르지만, 통상의 기술자에 의하여 적절하게 선택될 수 있다. 그러나 바람직한 효과를 위해서, 본 발명의 추출물은 1일 1 mg/kg 내지 1000 mg/kg, 바람직하게는 50 mg/kg 내지 500 mg/kg, 보다 바람직하게는 150 mg/kg 내지 300 mg/kg으로 투여하는 것이 좋다. 투여는 하루에 한번 투여할 수도 있고, 수회 나누어투여할 수 있다. 따라서, 상기 투여량은 어떠한 면으로든 본 발명의 범위를 한정하는 것은 아니다.
- [0057] 본 발명의 조성물은 쥐, 생쥐, 가축, 인간 등의 포유동물에 다양한 경로로 투여될 수 있다. 투여의 모든 방식은 예상될 수 있는데, 예를 들면, 경구, 직장 또는 정맥, 근육, 피하, 또는 뇌혈관내 (intracerebroventricular)

주사에 의해 투여될 수 있다.

- [0058] 본 발명은 또 다른 양태로, mTOR 저해제, 예를 들면 라파마이신 또는 이의 염, 에베로리무스 또는 이의 염, 화학식 1의 화합물 또는 이의 염, 화학식 2의 화합물 또는 이의 염, 화학식 3의 화합물 또는 이의 염, 및 화학식 4의 화합물 또는 이의 염으로 이루어진 군에서 선택되는 1종 이상을 포함하는, 뇌 체성 유전 변이 연관 국소 피질 이형성증의 예방 또는 개선용 식품 조성물에 관한 것이다. 상기 화학식 1 내지 4의 화합물을 상기 기재한 것과 동일하다.
- [0059] 상기 식품 조성물은 통상의 다른 식품 조성물의 성분과 함께 사용될 수 있고, 통상적인 방법에 따라 적절하게 사용될 수 있다. mTOR 저해제은 사용 목적(예방, 건강 또는 치료적 처치)에 따라 적합하게 결정될 수 있다. 일 반적으로, 식품용 조성물 제조시에는 유효성분의 원료에 대하여 0.01 내지 10 중량부, 바람직하게는 0.05 내지 1 중량부의 양으로 첨가될 수 있다. 그러나 건강 및 위생을 목적으로 하거나 또는 건강 조절을 목적으로 하는 장기간의 섭취의 경우에는 상기 양은 상기 범위 이하일 수 있다.
- [0060] 상기 식품 조성물은 뇌 체성 유전 변이 연관 국소 피질 이형성증의 예방 또는 개선을 위한 목적으로 건강식품에 함유될 수 있으며 그 종류에는 특별한 제한은 없다. 상기 물질을 첨가할 수 있는 식품의 예로는 육류, 소세지, 빵, 초코렛, 캔디류, 스넥류, 과자류, 피자, 라면, 기타 면류, 꼄류, 아이스크림류를 포함한 낙농제품, 각종 스프, 음료수, 차, 드링크제, 알콜 음료 및 비타민 복합제 등이 있으며, 통상적인 의미에서의 건강식품을 모두 포함할 수 있다. 상기 외에 본 발명의 상기 식품 조성물은 식품학적으로 허용 가능한 첨가제를 추가로 포함할 수 있다. 이러한 첨가제의 비율은 크게 중요하진 않지만 본 발명의 조성물 100 중량부 당 0.01 내지 0.1 중량부의 범위에서 선택되는 것이 일반적이다.

발명의 효과

[0061] 본 발명에 따라, 뇌 체성 유전 변이와 연관된 국소 피질 이형성증을 나타내는 환자에 mTOR 저해제, 예를 들면라파마이신, 에베로리무스, 및/또는 화학식 1 내지 4의 화합물을 투여함으로써 난치성 뇌전증 또는 이의 원인질환, 예를 들면 뇌 체성 유전 변이와 연관된 난치성 뇌전증으로 인한 자발적 발작, 행동발작 또는 뇌파 발작이나타나는 횟수를 현저하게 경감시키고, 대뇌에서 비정상적인 신경 세포의 개수 또는 크기를 줄일 수 있다.

도면의 간단한 설명

[0062] 도 1a는 mTOR 유전변이를 가지고 있는 환자(FCD4, FCD6으로 명명)에 대한 수술 후 자기공명영상 사진 및 병리조 직 시료에 대하여 H&E 염색을 시행한 결과를 나타낸다. 흰색 화살표는 수술 후 자기공명영상에서 제거된 뇌 부위, 검은색 화살표는 거대 신경세포를 나타낸다(Scale bar = 50um).

도 1b는 Deep 시퀀싱을 통해서 국소 피질 이형성증 환자에서 발견한 mTOR 관련 체성 유전변이 위치를 나타낸다.

도 1c는 mTOR 아미노산 서열 중 mTOR 관련 체성 변이가 나타난 아미노산 잔기가 진화적으로 보존되어 있음을 확 인한 결과를 나타낸다.

도 2a는 본 발명의 mTOR 유전변이를 발현하는 HEK293T 세포에서 S6 인산화(phosphorylation)를 웨스턴 블랏 (western blot)으로 분석한 결과를 나타낸다. "P-S6"은 인산화된 S6 단백질, "S6"는 S6 단백질, "Flag"은 flag 단백질을 나타낸다. "20% serum"은 20% serum에 1시간 동안 노출된 것으로 mTOR의 활성을 나타내는 양성 대조군 (positive control)으로 사용하였다.

도 2b는 본 발명의 mTOR 유전변이를 발현하는 HEK293T 세포에서 mTOR 인산화효소의 활성을 측정한 결과를 나타 낸다.

도 2c는 국소 피질 이형성증에 의한 난치성 뇌전증 환자의 병리조직 시료에 대하여 인산화된 S6 단백질 및 세포의 크기를 확인하기 위하여 면역조직화학 검사를 수행한 결과를 나타낸다.

도 2d는 국소 피질 이형성증에 의한 난치성 뇌전증 환자의 대뇌피질의 대표적인 부위에서 인산회된 S6 단백질의 평균 개수를 나타낸다. (number of counted cells=197-1182 per case).

도 2e는 국소 피질 이형성증에 의한 난치성 뇌전증 환자의 대뇌피질의 대표적인 부위에서 신경 세포 크기의 평균을 나타낸다.

도 3a는 본 발명의 염기서열 변이가 일어난 mTOR 유전자가 도입된 플라스미드로 배아기 14일(E14)에 전기천공한 배아를 태어나게 한 후 flashlight(Electron Microscopy Science, USA)로 형광을 발현하는 마우스만을 분류하

고 비디오 뇌전도(Video-Electroencephalography, video-EEG)를 측정하고 발작 이후 라파마이신을 투여하여 효과를 확인하는 모식도를 나타낸다. "in utero electroporation (E14)"는 배아기 14일에 본 발명의 염기서열 변이가 일어난 mTOR 유전자가 도입된 플라스미드를 주입하는 모식도, "GFP screening at birth (P0)"는 상기 플라스미드가 주입된 배아를 태어나게 한 후 flashlight(Electron Microscopy Science, USA)로 형광을 발현하는 마우스만을 분류하는 모식도, "Video-EEG monitoring(>3weeks)"는 마우스가 젖을 땐 후(>3weeks) video monitoring 만을 통해 seizure가 확인되면 전극을 식립하여 뇌전도(video-EEG)를 측정하는 모식도를 나타낸다.

도 3b는 본 발명의 염기서열 변이가 일어난 mTOR 유전자가 도입된 마우스에서 비디오 뇌전도 감시 결과에 근거한 자발적 발작 유무를 나타낸다. "No. of GFP+pups"는 염기서열 변이가 일어난 mTOR 유전자가 도입되어 GFP가발현한 마우스의 개체수, "No. of mice with seizure"은 염기서열 변이가 일어난 mTOR 유전자가 도입되어 발작을 일으키는 마우스의 개체수를 나타낸다.

도 3c는 본 발명의 염기서열 변이가 일어난 mTOR 유전자가 도입되어 자발적 발작을 일으키는 마우스에 라파마이 신을 투여한 후 자발적 발작의 횟수를 측정한 결과를 나타낸다. *p<0.05 and **p<0.01 (n=7-17 for each group, one-way ANOVA with Bonferroni's post test)

도 3d는 본 발명의 염기서열 변이가 일어난 mTOR 유전자가 도입되어 자발적 발작을 일으키는 마우스 및 상기 마우스에 라파마이신을 투여한 후 GFP 양성 세포의 크기 변화를 확인한 결과를 나타낸다.

도 4는 국소 피질 이형성증 환자로부터 얻은 시료를 이용하여 Deep 시퀀싱 분석을 수행하고, 이후 세포 및 생체 기능 분석을 수행하는 실험의 개요를 나타낸다.

도 5a는 Deep 시퀀싱 수행 결과에 대하여 Virmid (Genome Biology, 14(8), R90 (2013)) 및 MuTect software (Nature Biotechnology, 31, 213 (2013))을 동시에 이용하여 뇌 특이적 유전 변이를 발굴한 알고리즘을 나타낸다.

도 5b는 국소 피질 이형성증 환자의 시료에 대하여 Deep 전체 엑솜 시퀀싱 및 amplicon 시퀀싱으로부터 기준 대립 유전자(Ref), 변이된 대립 유전자(Mut) 및 변이율을 나타낸다.

도 6은 Deep 전체 엑솜 시퀀싱에서 발견된 국소 피질 이형성증에서의 체성 유전변이를 Integrative Genomic Viewer(IGV)의 collapsed mode를 이용하여 색이 표시된 막대로 시각화하여 나타낸 것이다.

도 7은 국소 피질 이형성증 환자에 대한 자기공명영상을 나타낸다. 화살표는 질환에 이환된 부위를 나타낸다.

도 8은 pymol(The PyMOL Molecular Graphics System, Schrodinger, LLC)사용해서 확인한 mTOR 인산화효소의 3차원 구조와 영역구성을 나타낸다. "FAT"은 mTOR의 FRAP, ATM, TRRAP 영역, "FRB"는 FKBP12-라파마이신 부착영역, "KD"는 인산화 영역의 N, C 말단을 나타낸다. 촉매 및 활성 loop 를 각각 파란색과 붉은색으로 나타내었다. ATPrS 는 막대로 Mg2+는 구로 나타내었다. FCD 환자에서 발견된 유전변이 부위는 붉은색으로 나타내었다.

도 9a는 본 발명의 mTOR 유전변이를 발현하는 HEK293T 세포에 대하여 라파마이신을 처리한 결과를 나타낸다.

도 9b는 본 발명의 mTOR 유전변이를 발현하는 HEK293T 세포에 대하여 라파마이신을 처리한 결과를 나타낸다. "P-S6K"은 인산화된 S6 단백질, "S6K"는 S6 단백질을 나타낸다.

도 9c는 본 발명의 mTOR 유전변이를 발현하는 HEK293T 세포에 대하여 화학식 1 내지 4의 화합물 및 에베로리무스를 처리한 결과를 나타낸다. "P-S6"은 인산화된 S6 단백질, "S6"는 S6 단백질을 나타낸다.

도 10은 뇌전증 수술을 받은 국소 피질 이형성증에 의한 난치성 뇌전증 환자의 병리조직에서 S6 단백질의 인산화가 증가한 거대신경세포를 미세박리하고, sanger 시퀀싱을 통하여 mTOR 유전자에서 본 발명의 유전변이 대립유전자가 증폭되었음을 확인한 결과를 나타낸다. 노란점은 NeuN에 양성이면서 S6 단백질의 인산화가 증가한 거대신경세포, "LCM"은 레이저 캡쳐 세포박리법을 이용하여 미세박리된 거대세포를 나타낸다. 대조군은 환자의 뇌조직에서 증폭없이 추출한 게놈 DNA를 사용하였다. Scale bar, 100 um

도 11a는 본 발명의 염기서열 변이가 일어난 mTOR 유전자가 도입된 플라스미드로 배아기 14일(E14)에 전기 천공후 배아기 18일(E18)에 뇌 관상 절단 후 분석하는 과정을 보여주는 개요를 나타낸다.

도 11b는 본 발명의 염기서열 변이가 일어난 mTOR 유전자가 도입된 마우스에서 신경 세포 이동 장애 및 mTOR 활성을 확인하기 위하여, 본 발명의 염기서열 변이가 일어난 mTOR 유전자가 도입된 마우스 배아기 18일(E18)의 뇌관상 절단 면을 나타낸다. "CP"는 대뇌 피질 판(Cortical plate), "IZ"은 대뇌 중간층(intermediate zone),

"SVZ"는 뇌실하영역(subventricular zone), "VZ"는 뇌실영역(ventricular zone), "Wild type"은 야생형 mTOR 플라스미드가 삽입된 경우, "Relative intensity value"는 각 경우에 GFP(green fluorescent protein)의 상대적인 세기를 나타낸다.

도 11c는 본 발명의 염기서열 변이가 일어난 mTOR 유전자가 도입된 마우스의 배아 피질 발달과정에서 mTOR 활성 변화를 확인한 결과를 나타낸다. (Scale bars, 20 um, Error bars, s.e.m.)

도 12a는 본 발명의 염기서열 변이가 일어난 mTOR 유전자가 도입된 마우스에서 자발적 발작에 대한 비디오 뇌전도 감시 결과를 나타낸다. "LF"는 좌측 전두엽(left frontal), "RF"는 우측 전두엽(right frontal), "LT"는 좌측 측두엽(left temporal), "RT"는 우측 측두엽(right Temporal)을 의미한다.

도 12b는 본 발명의 염기서열 변이가 일어난 mTOR 유전자가 도입된 마우스에서 발작간극파(interictal spike) 및 비경련성 뇌파 발작(electrographic seizure) 를 나타낸다.

도 12c는 본 발명의 염기서열 변이가 일어난 mTOR 유전자가 도입된 마우스에서의 발작간극파의 빈도 및 상기 마우스에 라파마이신을 투여한 후 발작간극파의 빈도 변화를 나타낸다.

도 12d는 본 발명의 염기서열 변이가 일어난 mTOR 유전자가 도입된 마우스에서의 비경련성 뇌파 발작의 빈도 및 상기 마우스에 라파마이신을 투여한 후 비경련성 뇌파 발작의 빈도 변화를 나타낸다.

도 12e는 야생형의 mTOR 유전자가 도입된 마우스 및 본 발명의 염기서열 변이가 일어난 mTOR 유전자가 도입된 마우스에서의 발작 시기을 나타낸다. (n=8-20 for each group). Error bars, s.e.m.

도 13 및 도 14는 본 발명의 mTOR 유전변이를 발현하는 HEK293T 세포에 대하여 다양한 mTOR 저해제를 처리한 결과를 나타낸다. "P-S6K"은 인산화된 S6 단백질, "S6K"는 S6 단백질을 나타낸다.

도 15은 TSC-1 야생형과 유전변이를 발현하는 HEK293T 세포에 대하여 웨스턴 블랏 결과를 나타낸다. (-)는 control, (+)는 rapamycin 처리(200 nM)를 나타낸다. "P-S6K"은 인산화된 S6K 단백질, "S6K"는 S6K 단백질을 나타낸다.

도 16는 TSC-2 야생형과 유전변이를 발현하는 HEK293T 세포에 대하여 웨스턴 블랏 결과를 나타낸다. (-)는 control, (+)는 rapamycin 처리(200 nM)를 나타낸다. "P-S6K"은 인산화된 S6K 단백질, "S6K"는 S6K 단백질을 나타낸다.

도 17은 AKT3 야생형과 유전변이를 발현하는 HEK293T 세포에 대하여 웨스턴 블랏 결과를 나타낸다. (-)는 control, (+)는 rapamycin 처리(200 nM)를 나타낸다. "P-S6K"은 인산화된 S6K 단백질, "S6K"는 S6K 단백질을 나타낸다.

도 18은 실시예 9에 따라 TSC-1의 p.Arg22Trp 및 p.Arg204Cys 변이체는 mTOR 과활성화 관련 되어있다. 상기 TSC1 변이체가 mTOR 과활성을 유도하는 기전에 대한 확인을 위한 Immunoprecipitation 결과를 나타낸다. Empty 는 아무것도 처리하지 않은 세포를 나타낸다.

도 19은 실시예 9에 따라 GTP-agarose pull down assay를 나타낸다. 구체적으로 TSC complex의 기질인 GTP-bound Rheb 단백질의 양을 측정함으로써 TSC complex의 활성화 정도를 측정한다.

도 20은 본 발명의 mTOR 유전변이를 발현하는 HEK293T 세포에 대하여 라파마이신을 처리한 결과를 나타낸다. **p<0.01 and ***p<0.001 (야생형 대비, n=3-5 각 그룹당, one-way ANOVA with Bonferroni's post test)

도 21는 본 발명의 mTOR 유전변이를 발현하는 HEK293T 세포에 대하여 라파마이신을 처리한 결과를 나타낸다. "P-S6K"은 인산화된 S6 단백질, "S6K"는 S6 단백질을 나타낸다.

도 22은 본 발명의 mTOR 유전변이를 발현하는 HEK293T 세포에 대하여 화학식 1 내지 4의 화합물 및 에베로리무스를 처리한 결과를 나타낸다. "P-S6"은 인산화된 S6 단백질, "S6"는 S6 단백질을 나타낸다.

도 23a 및 23b는 실시예 10에 따라 mTOR 야생형과 유전변이를 발현하는 HEK293T 세포에 대하여 6가지 약물처리 전후 변화를 확인한 웨스턴 블랏 결과를 나타낸다. (-)는 control, (+)는 약물 처리(200 nM)를 나타낸다. "P-S6K"은 인산화된 S6K 단백질, "S6K"는 S6K 단백질을 나타낸다.

도 24a 및 24b는 TSC1 야생형과 유전변이를 발현하는 HEK293T 세포에 대하여 6가지 약물처리 전후 변화를 확인한 웨스턴 블랏 결과를 나타낸다. (-)는 control, (+)는 약물 처리(200 nM)를 나타낸다. "P-S6K"은 인산화된

S6K 단백질, "S6K"는 S6K 단백질을 나타낸다.

도 25a 및 25b는 TSC2 야생형과 유전변이를 발현하는 HEK293T 세포에 대하여 6가지 약물처리 전후 변화를 확인한 웨스턴 블랏 결과를 나타낸다. (-)는 control, (+)는 약물 처리(200 nM)를 나타낸다. "P-S6K"은 인산화된 S6K 단백질, "S6K"는 S6K 단백질을 나타낸다.

도 26a 및 26c는 mTOR 변이가 TSC1 및 TSC2의 변이가 확인된 모든 국소피질 이형성증 환자의 병리학적 샘플을 나타낸다. "Non-FCD"는 국소대뇌피질 이형성증 아닌 정상 뇌를 가진 샘플, "P-S6"은 S6 단백질에 인산화가 일어난 결과, "NeuN"은 신경마커(neuronal marker), "Merge"는 P-S6 및 NeuN의 이미지를 병합하여 나타낸 것이다.

도 26b 및 26d는 피질(cortical region)의 4 내지 5 부분에서 S6 단백질에 인산화가 일어난 세포의 비율을 나타 내고,

도 26e 및 26f는 신경마커(neuronal marker, NeuN) 양성 세포 크기를 나타낸다. *p<0.05, **P<0.001, ***P<0.0001 [relative to Non-FCD samples, one-way ANOVA with Bonferroni posttest]. Error bars, s.e.m. Scale bars, 50 um.

도 27a 는 TSC 마우스 모델에서 신경 세포 이동 장애가 발생하고 그로 인한 대뇌 피질 발달기형을 나타낸다. "Control"은 sgRNA가 삽입되지 않은 경우를 나타내고, 붉은 글씨는 플라스미드를 발현하는 세포의 비율을 나타낸다. Scale bars, 250 um.

도 27b는 피질 내에서 전기천공된 세포의 분포를 나타낸다. *p<0.05, ***P<0.0001 [Two-way ANOVA with Bonferroni posttest]. Error bars, s.e.m.

도 28 자발적 발작을 일으키는 TSC2 마우스 모델에 라파마이신을 투여한 후 자발적 발작의 횟수를 측정한 결과를 나타낸다. *p<0.05 and **p<0.01 (n=7-17 for each group, one-way ANOVA with Bonferroni's post test)

발명을 실시하기 위한 구체적인 내용

[0065]

[0063] 이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.

실시예 1: 전체 엑솜 시퀀싱 유전자 발견 과정 및 재확인

- [0066] 실시예 1-1:4명의 환자에서 전체엑솜시퀀싱으로 mTOR 유전변이 3가지 후보군 확인
- [0067] FCDII 환자 4명 (FCD3, FCD4, FCD6, FCD23으로 명명)의 뇌조직 시료에서 deep whole exom sequencing(read depth 412-668?)를 시행하였고 Virmid와 Mutect 두 가지 알고리즘에서 동시에 발견되는 후보 유전변이 3가지를 선택하였다.
- [0068] 전체 액솜 시퀀싱 데이터 획득(whole exome sequencing)의 구체적으로 방법으로서, Agilent library preparation protocols (Agilent Human All Exon 50 Mb kit)을 제조사의 방법대로 사용하여 시퀀싱 라이브러리를 제작하였다. Hiseq2000(illumina)를 사용하여 시퀀싱을 시행하였으며 분석을 보다 정확하게 진행하기 위해 일반적인 시퀀싱 depth로다 5배정도 증가시킨 ~500x로 시퀀싱을 시행하였다. 시퀀싱 후 나온 데이터는 Broad Institute best practice pipleline(https://www.broadinstitute.org/gatk/)을 사용하여 분석할 수 있는 형태의 파일로 만들었다.
- [0070] <u>실시예 1-2: 위치-특이적인 앰플리콘 시퀀싱을 이용한 3개 후보 유전변이의</u> 재확인을 통해 한 개 유전변이 (L2427P) 확인
- [0071] 다음으로 이들 후보 유전변이에 대해서 위치-특이적인 앰플리콘 시퀀싱을 시행하였다(read depth, 100-347,499?). 이에 사용된 시료는 같은 환자의 조직에서 생물학적 복제를 통해서 얻었기 때문에 저빈도의 유전변이로 오인될 수 있는 시퀀싱 오류가 최소화할 수 있었다. 위치특이적 앰플리콘 시퀀싱에서는 유전 변이율이 1%를 넘는 경우에만 변이가 있는 것으로 정하였다.
- [0072] 위치-특이적 앰플리콘 염기서열 분석법(Site-specific amplicon sequencing) mTOR 표적 유전자 코돈 부위(아미노산 Cys1483, Leu2427을 포함하는 부위)가 포함되도록 2개의 표적을 가지는 2쌍의 프라이머를 제작하였다 (표

2).

丑 2

[0073]	표적 부위		프라이머	서열번호
	Chr1:11174301	정방향	5'-TAGGTTACAGGCCTGGATGG-3'	11
	~Chr1:11174513	역방향	5'-CTTGGCCTCCCAAAATGTTA-3'	12
	Chr1:11217133	정방향	5'-TCCAGGCTACCTGGTATGAGA-3'	13
	~Chr1:11217344	역방향	5'-GCCTTCCTTTCAAATCCAAA-3'	14

[0074] 각각의 프라이머는 환자 특이적인 표지자(index)를 포함하고 있으며 한 환자의 시료당 한 가지의 표지자를 사용하여 유전변이 분석시 염기서열이 어느 환자에서 유래되었는지 알 수 있도록 하였다. 이렇게 제작한 프라이머를 사용하여 표적 부위의 PCR을 진행하여 2개의 표적 부위 염기서열을 증폭하였다. 이후 Truseq DNA kit(Illumin a)를 이용하여 DNA library를 제작하였으며 Miseq sequencer(Illumina)를 이용하여 표적 유전자 재시퀀싱을 시행하였다(중앙 read depth 135,424x). Bowtie2 (http://bowtie-bio.sourceforge.net/bowtie2/index.shtml) 프로그램을 사용하여 분석할 수 있는 형태의 파일(bam file)으로 만들었다.

[0076] 실시예 1-3: 서열분석결과

- [0077] 2가지 시퀀싱 방법을 사용하고 생물학적 복제를 시행한 결과, 도 5a에서 알 수 있는 바와 같이, mTOR c.7280T>C p.Leu2427Pro 이 2명의 환자에서 반복적으로 재현되었다. 도 5b에서 알 수 있는 바와 같이, 유전변이율은 FCD4 환자에서 9.6 내지 12.6%, FCD6 환자에서 6.9 내지 7.3%였다.
- [0078] 또한, 도 5b 및 도 6에서 알 수 있는 바와 같이, 상기 유전변이는 혈액 시료에서는 발견되지 않는 것을 확인하였다.

[0080] 실시예 2: 확대 환자군에서 mTOR 특이적 유전변이 검색

[0081] 실시예 1에서 4명 환자군에서 mTOR 특이적 유전변이 검색한 결과를 바탕으로, 환자군을 확대하여 73명의 추가환 자에서 MTOR 특이적 유전변이 조사하였다.

[0083] 실시예 2-1: 환자 시료 채취 및 게놈DNA 추출

- [0084] 국소 피질 이형성증(focal cortical dysplasia, FCD)으로 인한 난치성 뇌전증 수술 환자 73명의 동의 하에 환자의 뇌조직(1~2g), 타액(1~2ml), 혈액(약 5ml) 포르말린 고정 파라핀 포매된 뇌 조직을 얻었다(세브란스 병원 소아신경외과 및 소아신경과). 환자의 뇌조직, 혈액, 타액, 포르말린 고정 파라핀 포매 뇌조직에서 다음의 각각에 해당하는 DNA 추출 kit를 제조사의 지침대로 사용하여 추출하였다:
- [0085] 뇌조직: Qiamp mini DNA kit (Qiagen, USA), 혈액 : Flexigene DNA kit (Qiagen, USA), 타액 : prepIT2P purification kit (DNAgenotek, USA), 포르말린고정 파라핀 포매 뇌조직 : Qiamp mini FFPE DNA kit (Qiagen, USA).

[0087] 실시예 2-2: 서열분석

- [0088] 하이브리드 캡쳐 시퀀싱 (read depth, 100-17,700?)은 73명의 추가적인 FCDII 환자의 뇌조직 샘플에서 시행하였고 PCR 기반 앰플리콘 시퀀싱은 위치특이적 앰플리콘 시퀀싱(read depth, 100-347,499?, 73명환자)과 mTOR 앰플리콘 시퀀싱(read depth, 100-20,210?, 59명환자) 두 가지를 시행하였다.
- [0089] 하이브리드 캡쳐 염기서열 분석법(hybrid capture sequencing)으로서, SureDesign online tools(Agilent Technologies)를 이용하여 mTOR 특이적인 probe를 제작하였다. Agilent library preparation protocols을 제조사의 방법대로 사용하여 시퀀싱 라이브러리를 제작하였다. Hiseq2500(illumina)를 사용하여 시퀀싱을 시행하였다(중앙 read depth 515x). 시퀀싱 후 나온 데이터는 Broad Institute best practice

pipleline(https://www.broadinstitute.org/gatk/)을 사용하여 분석할 수 있는 형태의 파일(bam file)로 만들었다.

[0090] mTOR amplicon 시퀀싱)으로서, illumina design studio (http://designstudio.illumina.com)에서 제작한 mTOR amplicon(Truseq custom amplicon kit,illumina)을 이용하였으며 제조사의 방법대로 라이브러리를 제작하였다. Miseq sequencer(Illumina)를 사용하여 시퀀싱을 하였다(중앙 read depth 1,647x). BWA-MEM algorithm (http://bio-bwa.sourceforge.net)을 사용하여 분석할 수 있는 형태의 파일(bam file)으로 만들었다.

[0092] 실시예 2-3: 서열분석 실험결과

- [0093] 뇌조직 특이적인 de novo 체성 유전변이를 찾기 위하여 혈액-뇌조직을 짝으로(paired) Virmid (http://sourceforge.net/projects/virmid/) 와 Mutect (http://www.broadinstitute.org/cancer/cga/mutect) 각각의 분석법을 전체 엑솜 시퀀싱 데이터에 사용하여 분석하였다. 두 가지 분석법에서 공통적으로 발견되는 체성 유전변이만 이 후 실험에 사용하였다.
- [0094] 또한 하이브리드 캡쳐 시퀀싱과 PCR을 기반으로 한 앰플리콘 시퀀싱 두 가지에서 모두 발견된 유전변이 중 선별 기준(depth 100이상 mutated call 3개 이상(mapping quality 30 이상))을 만족하는 유전변이만을 질환 관련 유전자 후보로 선정하였다.
- [0095] 이에 따라 발견된 9개의 체성 유전변이 위치(chr1:11298590 for c.1871G>A, chr1:11217330 for c.4348T>G, chr1:11217231 for c.4447T>C, chr1:11199365 for c.5126G>A, chr1:11188164 for c.5930C>A, chr1:11184640 for c.6577C>T, chr1:11184573 for c.6644C>T, chr1:11174395 for c.7280T>C and c.7280T>A)를 1000 게놈 프로젝트에서 시행한 2508개의 CRAM(compressed BAM)에서 확인하였다. 그 결과 9개 유전변이 위치 모두 상기 선별 조건을 만족하는 체성 유전변이는 발견되지 않았다. 그에 따라, 본 발명에서 확인한 유전변이가 질환 특이적이라는 것을 확인하였다.

[0097] 실시예 2-4:서열분석 결과

- [0098] 하이브리드 캡쳐 시퀀싱(73명)과 mTOR 앰플리콘 시퀀싱(59명) 두 가지 방법을 사용 이중 두 가지 모두에서 나오는 유전변이만을 진성유전변이 후보군으로 선정 그 결과 총 9개의 진성유전변이 후보군을 수득하게 되었다(실시에 1에서 찾은 유전변이 포함)
- [0099] 시퀀싱 오류를 확실히 제거하기 위하여 유전변이율이 1% 이상인 경우만 양성으로 보았고 하이브리드 캡쳐와 PCR 기반 앰플리콘 시퀀싱 두 가지 모두에서 발견되고 다양한 시료에서 재확인된 것들만 진성 유전변이로 선택하였다.
- [0100] 그 결과, 도 1b에서 알 수 있는 바와 같이, 또 다른 10명의 FCDII 환자에서 8개의 서로 다른 mTOR 유전변이가 관찰되었다: mTOR c.1871G>A (p.Arg624His), c. 4348T>G (p.Tyr1450Asp), c.4447T>C (p.Cys1483Arg), c.5126G>A (p.Arg1709His), c.5930C>A (p.Thr1977Lys), c.6577C>T (p.Arg2193Cys), c.6644C>T (p.Ser2215Phe), 및 c.7280T>A (p.Leu2427Gln). 최종적으로 15.6%(12/77)의 환자에서 9개의 서로 다른 mTOR 유전변이를 발견하였다(표 3).

丑 3

[0101]	환자	수술 나이	성별	병리학	mTOR 유전자 변이	mTOR 단백질 변이
	FCD 4	5년2개월	여	FCDIIa와 일치	c.7280T>C	p.Leu2427Pro
				(피질이상적층(Cortical dyslamination) / 신경세포 이 형성		
				(Dysmorphic neurons)		
	FCD 6	5년	승	상동	c.7280T>C	p.Leu2427Pro
	FCD 91	7년1개월	ठ	상동	c.6577C>T	p.Arg2193Cys
	FCD 104	1년2개월	남	상동	c.1871G>A	p.Arg624His
	FCD 105	3년7개월	남	상동	c.5126G>A	p.Arg1709His

FCD 107	7년3개월	여	FCDIIb와 일치	c.6644C>T	p.Ser2215Phe
			(피질이상적층 / 신경세포 이형 성 / 풍선세포(balloon cells))		
FCD 113	10년	여	상동	c.7280T>A	p.Leu2427Gln
FCD 116	7년9개월	남	상동	c.5930C>A	p.Thr1977Lys
FCD 121	11개월	남	상동	c.4348T>G	p.Tyr1450Asp
FCD 128	4년4개월	여	상동	c.4447T>C	p.Cys1483Arg
FCD 143	2년10개월	여	상동	c.6644C>T	p.Ser2215Phe
FCD 145	4년1개월	여	상동	c.5930C>A	p.Thr1977Lys

[0102] 모든 발견된 유전변이는 유전변이 양성환자의 타액과 혈액에서 모두 음성이었다. 발견된 유전변이는 1000 게놈 데이터베이스에서 모두 음성이었다. 발견된 유전변이 중 p.Thr1977Lys, p.Ser2215Phe, 및 p.Leu2427Pro 는 2 환자에서 반복적으로 검출되었다. 모든 환자가 한 개의 mTOR 유전변이를 가지고 있음을 확인하였다. 유전변이율은 1.26% 내지 12.6%로 나타났고, 도 1c에서 알 수 있는 바와 같이, 유전변이 부위의 아미노산 잔기는 진화적으로 보존되어 있었다.

실시예 3: 세포를 이용한 mTOR 유전변이에 의한 mTOR 과활성 확인

[0105] p.Tyr1450Asp, p.Cys1483Arg, p.Leu2427Gln, 및 p.Leu2427Pro 유전변이가 mTOR를 과활성시키는지 확인하기 위하여 HEK293T세포에 야생형과 변이체 mTOR 벡터를 형질도입하고 mTOR유전자의 잘 알려진 표지자인 S6 단백질과 S6K 단백질의 인산화를 웨스턴블랏으로 확인하였다.

실시예 3-1: 돌연변이 유발 및 mTOR 변이 작제물(mTOR mutant construct) 제작

[0108] 야생형 mTOR 작제물이 플래그-태그 되어 있는 pcDNA3.1(pcDNA3.1 flag-tagged wild-type mTOR construct)을 캘리포니아대학교 샌디에고 캠퍼스(University of California, Sandiego)의 쿤 리앙 구안(Kun-Liang Guan) 박사로부터 제공받았다. 상기 작제물은 QuikChange site-directed mutagenesis kit(200523, Stratagene, USA)와 함께 mTOR 변이체 벡터(Y1450D, C1483R, L2427Q 및 L2427P)를 제조하기 위해 사용하였다.

[0109] pCIG-mTOR mutant-IRES-EGFP 벡터를 만들기 위하여 우선 다음의 annealing primer [forward primer 5'-AATTCCAATTGCCCGGGCTTAAGATCGATACGCGTA-3'(서얼변호 15) 및 reverse primer 5'-ccggtacgcgtatcgatcttaagcccgggcaattgg-3'(서열번호 16)]를 사용하여 pCIG2(CAG promoter-MCS-IRES-EGFP)에 MfeI과 MluI 제한효소 절단부위를 삽입하여 pCIG-C1을 만들었다. 새로 삽입한 MfeI과 MluI 제한효소 절단부위에 다음의 프라이머[hmTOR-MfeI-flag-F; gATcACAATTGTGGCCACCATGGACTACAAGGACGATGACAAGatgc (서열번호 17), hmTOR-MluI-R; tgatcaACGCGTttaccagaaagggcaccagccaatatagc (서열번호 18)]를 사용하여 subcloning을 시행하였고. pCIG-mTOR wild type-IRES-EGFP과. pCIG-mTOR mutant-IRES-EGFP 벡터를 만들었다. 돌연변이 유발을 위해 사용한 프라이머는 표 4에 나타내었다.

丑 4

[0110]

[0104]

[0107]

			_
이름		프라이머	서열번호
Y1450D	정방향	5'-tcgtgcagtttctcatcccaggtagcctggatc-3'	19
	역방향	5'-gatccaggctacctgggatgagaaactgcacga-3'	20
C1483R	정방향	5'-GGCCTCGAGGCGGCGCATGCGGC-3'	21
	역방향	5'-GCCGCATGCGCCGCCTCGAGGCC-3'	22
L2427Q	정방향	5'-GTCTATGACCCCTTGCAGAACTGGAGGCTGATG-3'	23
	역방향	5'-CATCAGCCTCCAGTTCTGCAAGGGGTCATAGAC-3'	24
L2427P	정방향	GTCTATGACCCCTTGCCGAACTGGAGGCTGATG	25
	역방향	CATCAGCCTCCAGTTCGGCAAGGGGTCATAGAC	26

[0112] 실시예 3-2. 야생형 및 변이체 mTOR 벡터를 형질도입(transfection) 및 웨스턴 블랏

[0113] HEK293T cell(thermoscientific)을 10%의 FBS 포함하는 DMEM(Dulbecco's Modified Eagle's Medium) 배지에서 5% CO₂ 조건으로 배양하였다. 세포는 jetPRIME 형질도입 시약(jetPRIME transfection reagent)(Polyplus, France)를 이용하여 empty flag-tagged 벡터, flag-tagged mTOR 야생형 및 flag-tagged mTOR 변이체로 형질도입하였다. 세포는 형질도입 후 24시간 동안 DMEM 배지에서 0.1%의 FBS로 serum-starved 하 고 1mM의 MgCl₂ 및 CaCl₂를 포함하는 PBS에서 37, 5% CO₂ 조건으로 1시간 동안 배양하였다. 세포는 1%의 Triton X-100, Halt 단백질 분해효소(Halt protease) 및 phosphatase inhibitor cocktail(78440, Thermo Scientific, 포함하는 PBS에서 용해(lyse)하였다. 단백질은 SDS-PAGE로 용해(resolve)하고 PVDF (membrane)(Milipore, USA)으로 이동시켰다. 막은 0.1%의 Tween 20(TBST)을 포함하는 TBS에서 3%의 BSA로 블락 (block)하였다. 그 후, TBST로 4회 반복하여 세척하였다. 막은 1/1000로 희석된 anti-phospho-S6-ribosomal 단 백질(5364, Cell Signaling Technology, USA), anti-S6 ribosomal 단백질(2217, Cell Signaling Technology, USA) 및 anti-flag M2(8164, Cell Signaling Technology, USA)를 포함하는 1차 항체와 함께 TBST에서 4로 각각 밤새 배양하였다. 배양 후, 상기 막은 TBST로 4회 반복하여 세척하였다. 그 후, 1/5000으로 희석된 HRP-linked anti-rabbit 또는 anti-mouse 이차 항체(secondary antibodies)(7074, Cell Signaling Technology, USA)와 함 께 상온에서 2시간 동안 배양하였다. TBST를 세척하고, ECL 반응 시약을 이용하여 immunodetection을 수행하였 다.

[0115] 실시예 3-3. 변이체 mTOR를 발현하는 세포에서 S6 단백질의 인산화 변화 확인

- [0116] 생체 외 mTOR 인산화효소 활성 측정(In vitro mTOR kinase assay)하고자, mTOR의 인산화 활성은 K-LISA mTOR 활성 키트(CBA055, Calbiochem, USA)를 이용하여 제조업자의 프로토콜에 따라 측정하였다. 형질도입된 세포 (HEK293T cell)는 1%의 Tween 20, Halt 단백질 분해효소 및 phosphatase inhibitor cocktail을 포함하는 TBS에서 용해(lyse)하였다. 전체 용해물(lysate)의 1 mg은 15 ul의 단백질 G-비드(G-beads)(10004D, Life technologies, USA)를 첨가하여 pre-clear하고 4에서 15분간 배양하였다. Anti-flag 항체를 pre-clear 된 용해물에 첨가하고 4에서 밤새 배양하였다. 그리고 20% 슬러리 단백질 G-비드 50 ul를 첨가하고 4에서 90분간 배양하였다. 상청액(supernatant)을 조심스럽게 제거하였다. 펠릿 비드(pelleted beads)는 라이시스 버퍼(lysis buffer) 500 ul로 4번 반복하여 세척하고 K-LISA mTOR 활성 키트(K-LISA mTOR activity kit)에서 제공받은 1X 인산화효소 버퍼(kinase buffer)로 1회 세척하였다. 펠릿 비드는 2X 인산화효소 버퍼 50 ul 및 mTOR 기질 (substrate)(p70S6K-GST fusion protein) 50 ul로 재현탁하고 이어 30에서 30분간 배양하였다. 반응 혼합물 (reaction mixture)은 글루타치온-코팅된 96-well 플레이트(Glutathione-coated 96-well plate)에 배양하고 30에서 30분간 배양하였다. Anti-p70S6K-pT389 항체, HRP 항체-결합체(antibody-conjugate) 및 TMB 기질 (substrate)를 이용하여 인산화 기질(phosphorylated substrate)을 검출하였다. 상대적인 활성은 450 nm에서 흡광도를 읽어 측정하였다
- [0117] 도 2a 및 9b에서 알 수 있는 바와 같이, 변이체 mTOR를 발현하는 세포에서 S6 단백질의 인산화가 증가하였다.
- [0118] 또한, 야생형과 변이체 mTOR 단백질을 각각 야생형과 변이체를 발현하는 HEK293T 세포에서 분리하고 생체외(in vitro) mTOR 인산화 효소활성을 측정하였다. 도 2b에서 알 수 있는 바와 같이, pCys1483Arg, p.Leu2427Gln, 및 p.Leu2427Pro 변이를 가진 mTOR 단백질이 높은 인산화 효소활성을 나타내는 것을 확인하였다.

[0120] 실시예 3-4. 약물 처리 후 S6K 단백질의 인산화 변화 확인

- [0121] 상기 변이체 mTOR를 발현하는 세포에 약물 (라파마이신, 에베로리무스, 화학식 1 내지 4의 화합물)을 처리한 후 S6K 단백질의 인산화 변화를 확인하였다.
- [0122] 상기 3-2와 동일한 방법으로, HEK293T cell에 mTOR 변이체를 형질도입하고, 24시간 동안 DMEM 배지에서 0.1%의 FBS로 serum-starved 하고 1 mM의 MgCl₂ 및 CaCl₂를 포함하는 PBS에서 37, 5% CO₂ 조건으로 1시간 동안 배양한 후, 라파마이신, 에베로리무스, 화학식 1 내지 4의 화합물(Torin1, INK128, AZD8055, GSK2126458)을 처리하였다: Torin은 TOCRIS에서 입수하였고, INK128, AZD8055, GSK2126458 는 Selleckchem에서 입수하였으며, 에베로리무스는 LC laboratory에서 입수하였다. 이후, 실시예 9와 동일한 방법으로 웨스턴 블랏을 실시하였다.
- [0123] 도 9a 및 도 9b에서 알 수 있는 바와 같이, 변이체 mTOR를 발현하는 세포에서 S6K 단백질의 인산화가 라파마이

신에 의해 저해됨을 확인하였다.

- [0124] 상기 변이체 mTOR를 발현하는 세포에 에베로리무스, 화학식 1 내지 4의 화합물 각각을 처리한 후 S6K 단백질의 인산화 변화를 확인하였다.
- [0125] 도 9c에서 알 수 있는 바와 같이, 변이체 mTOR를 발현하는 세포에서 S6K 단백질의 인산화가 에베로리무스 및 화학식 1 내지 4의 화합물에 의해 저해됨을 확인하였다.
- [0127] 실시예 3-5. 다양한 mTOR 저해제 처리 S6K 단백질의 인산화 변화 확인
- [0128] 실시예 3-2와 동일한 방법으로 다양한 변이체 mTOR를 발현하는 세포에 약물로서 라파마이신, 에베로리무스, 화학식 1 내지 4의 화합물)을 처리한 후 S6K 단백질의 인산화 변화를 확인하였다. 구체적으로 실험에 사용한 mTOR 변이체는 R624H, Y1450D, C1483R, R1709H, Y1977K, S2215F, L2427P 및 L2427Q 이었다.
- [0129] 구체적으로, 변이체 mTOR를 발현하는 세포에 에베로리무스, 화학식 1 내지 4의 화합물 각각을 처리한 후 S6K 단백질의 인산화 변화를 확인하였다. 그림에서 알 수 있는 바와 같이, 변이체 mTOR를 발현하는 모든 세포에서 S6K 단백질의 인산화가 에베로리무스 및 화학식 1 내지 4의 화합물에 의해 저해됨을 확인하였으며, 그 결과를 도 13 및 14에 나타냈다.
- [0131] 실시예 4: 환자시료를 이용한 mTOR 유전변이에 의한 mTOR 과활성 확인
- [0132] 실시예 4-1: FCD 환자의 뇌조직 절편의 면역 염색
- [0133] 유전변이를 가진 FCDII 환자가 mTOR 과활성을 보이는지 확인하기 위하여 S6 인산화 단백질과 NeuN(신경세포 표지자)에 대한 항체로 p.Leu2427Pro 유전변이를 가진 FCD 환자의 뇌조직 절편에서 면역염색을 시행하였다.
- [0134] 대뇌피질 발달기형이 아닌 뇌 시료(Non-MCD brain specimen)는 뇌종양(glioblastoma)을 갖는 환자의 종양이 없 는 부분(tumor free margin)에서 수술실에서 채집하였고 병리학적으로 종양이 없는 정상 뇌로 확정하였다. 외과 적 조직 덩어리(surgical tissue block)는 밤새 새롭게 준비한 phosphate-buffered(PB) 4% paraformaldehyde에 서 고정하고, 20% buffered sucrose에서 밤새 동결방지(cryoprotect) 되었고 gelatin-embedded 조직 덩어리 (7.5% gelatin in 10% sucrose/PB)로써 -80에서 보관하였다. 동결절편(Cryostat-cut section)(10 um 두께)은 채집되어 유리 슬라이드(glass slide)위에 놓고, 상온에서 한 시간 동안 PBS-GT(0.2% gelatin 및 0.2% Triton X-100 in PBS)로 차단(block)하고 다음의 항체들로 염색(stain)하였다: 인산화된 S6 ribosomal 단백질에 대한 토끼 항체(rabbit antibody to phosphorylated S6 ribosomal protein)(Ser240/Ser244)(1:100 dilution; 5364, Cell signaling Technology) 및 NeuN에 대한 마우스 항체(mouse antibody to NeuN)(1:100 dilution; MAB377, Millipore). 샘플은 PBS로 세척하고 다음의 이차 항체로 염색(stain)하였다: 마우스에 대한 Alexa Fluor 555conjugated 염소 항체(Alexa Fluor 555-conjugated goat antibody to mouse)(1:200 dilution; A21422, Invitrogen) 및 토끼에 대한 Alexa Fluor 488-conjugated 염소 항체(Alexa Fluor 488-conjugated goat antibody to rabbit)(1:200 dilution; A11008, Invitrogen). Mounting 용액(mounting solution)(P36931, Life technology)에 포함된 DAPI는 핵 염색에 사용하였다. Leica DMI3000 B 도립 현미경(inverted microscope)을 이 용하여 이미지를 얻었다. NeuN에 양성인 세포 수는 10x 대물렌즈(objective lens)를 이용하여 측정하였다; 뉴턴 이 풍부한 지역(regine) 내에서 하나의 시료(subject)당 4 내지 5 필드를 얻었고, 지역당 100개 이상의 세포를 기록하였다. DAPI-양성 세포의 수는 전체 세포 수를 나타낸다. 뉴런세포 크기는 NeuN 양성 세포에서 ImageJ 카운팅 software의 자동화된 프로토콜(automated counting protocol ImageJ software)(http://rsbweb.nih.gov/ij/)을 이용하여 측정하였다.
- [0135] 도 2c에서 알 수 있는 바와 같이, p.Leu2427Pro 유전변이를 가진 FCD4, 6 환자에서 인산화된 S6 단백질을 가진 신경세포의 수가 증가되었음을 확인하였다. 반면에, 도 2d에서 알 수 있는 바와 같이, Non-FCD 뇌조직에서는 이러한 증가가 관찰되지 않았다. 또한, 도 2e에서 알 수 있는 바와 같이, 병리조직에서 S6단백질의 인산화가 증가한 신경세포의 크기를 측정하였고 그 크기가 증가하였음을 확인하였다.
- [0137] 실시예 4-2: FCD 환자의 뇌조직 절편에서 S6 단백질의 인산화가 증가한 거대신경세포를 미세박리하고 sanger 시 퀀싱

- [0138] 덩어리(surgical tissue block)는 밤새 새롭게 준비한 phosphate-buffered(PB) paraformaldehyde에서 고정하고, 20% buffered sucrose에서 밤새 동결방지(cryoprotect) 되었고 gelatinembedded 조직 덩어리(7.5% gelatin in 10% sucrose/PB)로써 -80에서 보관하였다. 동결절편(Cryostat-cut section)(10 um 두께)은 채집되어 유리 슬라이드(glass slide)위에 놓고, 상온에서 한 시간 동안 PBS-GT(0.2% gelatin 및 0.2% Triton X-100 in PBS)로 차단(block)하고 다음의 항체들로 염색(stain)하였다: 인산화된 S6 단백질에 대한 토끼 항체(rabbit ant i body ribosomal to phosphorylated protein)(Ser240/Ser244)(1:100 dilution; 5364, Cell signaling Technology) 및 NeuN에 대한 마우스 항체 (mouse antibody to NeuN)(1:100 dilution; MAB377, Millipore). 샘플은 PBS로 세척하고 다음의 이차 항체로 염색(stain)하였다: 마우스에 대한 Alexa Fluor 555-conjugated 염소 항체(Alexa Fluor 555-conjugated goat antibody to mouse)(1:200 dilution; A21422, Invitrogen) 및 토끼에 대한 Alexa Fluor 488-conjugated 염소 항체(Alexa Fluor 488-conjugated goat antibody to rabbit)(1:200 dilution; A11008, Invitrogen).
- [0139] Mounting 용액(mounting solution)(P36931, Life technology)에 포함된 DAPI는 핵 염색에 사용하였다. 형광 염색된 슬라이드에서 PALM Laser capture system(Carl zeiss, Germany) 과 adhesive cap(Carl zeiss, Germany)를 사용하여 인산화된 S6 단백질 염색에 양성인 세포(약20개)들만 잘라내었다.
- [0140] 이후 QiAamp microkit(Qiagen,USA)를 사용하여 게놈 DNA를 추출하였고 하기 primer를 사용하여 PCR을 진행하여 유전변이 부위(mTOR c.7280T>C)를 증폭하였다(Sense 5'-CCCAGGCACTTGATGATACTC-3'(서열번호 27) 및 antisense, 5'-CTTGCTTTGGGTGGAGAGTT-3'(서열번호 28)).
- [0141] 중폭된 PCR 산물은 MEGAquick spin total fragment purification kit(Intron, Korea) 으로 정제한 후 BioDye Terminator and automatic sequencer system(Applied Biosystems)을 사용하여 Sanger 시퀀싱을 시행하였다.
- [0142] 도 10에서 알 수 있는 바와 같이, 같은 병리조직에서 S6 단백질의 인산화가 증가한 거대신경세포를 미세박리하고 sanger 시퀀싱을 p.Leu2427Pro 유전변이 대립유전자가 증폭되었음을 확인하였다. 이를 통하여, 발견된 유전변이가 mTOR 유전자의 과활성과 세포 성장을 비정상적으로 조절한다는 것을 입증하였다.

[0144] 실시예 5: 동물모델에서 mTOR 과활성이 대뇌발달에 미치는 영향

[0145] 빈번하게 관찰되는 p.Leu2427Pro 유전변이를 선택하여 동물모델에서 기능 분석을 하기로 선택하였다. mTOR 변이 체 작제물을 쥐의 배아에 전기천공으로 도입하여 대뇌신경세포이동과 S6 단백질의 인산화를 조사하였다.

[0147] 실시예 5-1: 동물 모델 제조

- [0148] 임신중인 마우스(E14)(다물사이언스)를 아이소플루레인(isoflurane) (0.4L/min of oxygen and isoflurane vaporizer gauge 3 during surgery operation)으로 마취하였다.
- [0149] 자궁각(uterine horn)이 노출되고, 개개 배아(embryo)의 측뇌실(lateral ventricle)에 실시예 3-1에서 제조한, mTOR C1483Y, mTOR E2419K 및 mTOR L2427P 변이체를 발현하는 플라스미드 2 내지 3ug과 결합한 Fast Green(F7252, Sigma, USA) 2ug/ml을 pulled 모세관(pulled glass capillary)를 이용하여 주입하였다. 플라스미드는 배아의 머리에 900 ms의 간격에 100 ms의 5번 전기 펄스인 ECM830 eletroporator(BTX-harvard apparatus)로 50V를 방전하여 전기천공(electroporation) 하였다.

[0151] 실시예 5-2: 마우스 모델의 이미지 분석

- [0152] 배아 마우스는 배아기 14일(E14)에 전기천공 되었고, 그 후 발달 4일 후(E18)에 뇌를 수확하였으며, 밤새 새롭게 준비한 phosphate-buffered(PB) 4% paraformaldehyde에서 고정하고, 30% buffered sucrose에서 밤새 동결방지 되었고 gelatin-embedded 조직 덩어리(7.5% gelatin in 10% sucrose/PB)로써 -80에서 보관하였다.
- [0153] 동결절편(30 um 두께)을 채집하여 유리 슬라이드 위에 놓았다. Mounting 용액(mounting solution)(P36931, Life technology)에 포함된 DAPI는 핵 염색에 사용하였다. Leica DMI3000 B 도립 현미경(inverted microscope) 또는 자이스 LSM510 공초점 현미경(Zeiss LSM510 confocal microscope)을 이용하여 이미지를 얻었다. 피질 (cortex) 내 전기천공된 세포의 분포를 보여주는 형광 강도(fluorescence intensity)는 명암 값(gray value)으

로 전환하고 뇌실 지역(Ventricular zone, VZ)부터 피질 판(Cortical plate, CP)까지 ImageJ software(http://rsbweb.nih.gov/ij/)를 이용하여 측정하였다. 멘더의 공존 분석(Mander's co-localization analysis)(http://fiji.sc/wiki/index.php/Colocalization_Analysis)는 Fiji software를 이용하여 수행하였다.

[0155] 실시예 5-3: 실험결과

- [0156] 도 11a에서와 같이, IRES-GFP 표지자를 가지는 mTOR 야생형과 p.Leu2427Pro 변이체 작제물을 대뇌 발달 중인 배 아 14일째에 전기천공법을 이용하여 도입한 후 배아 18일째 대뇌 신경세포 이동과 GFP 양성 신경세포의 S6 인산화를 측정하였다.
- [0157] 도 11b에서 알 수 있는 바와 같이, mTOR 변이체 작제물을 발현하는 쥐의 뇌조직 절편에서 GFP 양성인 신경세포가 대뇌피질판(cortical plate)에 감소되어 있고 대뇌 중간층(intermediate zone) 과 뇌실하영역 (subventricular zone) 뇌실영역(ventricular zone)에 증가되어 있음을 확인하였다. 이를 통하여, 신경세포의 이동에 문제가 있음을 입증하였다.
- [0158] 또한, 도 11c에서 알 수 있는 바와 같이, mTOR 변이체 작제물을 발현하는 GFP 양성세포가 S6 단백질의 인산화가 증가된 세포와 공존하는 것을 확인하였다. 이를 통하여, 발견된 유전변이가 동물 내에서 mTOR 인산화 효소의 활성을 증가시키고 대뇌피질의 발달을 저해한다는 것을 입증하였다.

[0160] 실시예 6: 동물모델에서 mTOR 과활성에 의한 환자의 질병 표현형 확인

- [0161] 실시예 6-1. 동물모델에서 자발적 발작 또는 비정상적 신경 세포 확인
- [0162] 도 3a에서와 같이, 전기천공에 의해 mTOR 변이체 작제물을 발현하는 쥐가 자발적인 발작을 보이는 지 확인하기 위하여 배아기 14일 째 전기천공법으로 변이체 작제물을 도입한 후 배아가 태어난 직후 이 작제물이 잘 발현하는 쥐 태아를 GFP 발현 유무로 선별하였다.
- [0163] 생후 3주 이후부터 비디오 뇌전도 감시를 시행하였다. 태아를 어미와 분리한 후 하루에 12시간 비디오 감시를 통해서 긴장-간대발작이 시작되는지를 확인하였다. 그 후 발작을 보이는 쥐를 하루 6시간 2일이상 비디오-뇌전도 감시를 실하여 간질파를 보이는 자발적 발작에 대해서 조사하였다.
- [0164] 구체적으로 마우스가 젖을 땐 후(>3weeks), Video monitoring만을 통해 Seizure 발생 유무를 확인한 후 뇌전도 측정을 위해 전극을 식립하는 수술을 진행하였다. 전극은 경뇌막 상층(epidural layer)에 위치하도록 하였으며 천정점(Bregma)를 기준으로 전두엽 부위에 2개(AP+2.8mm, ML.71.5 mm), 측두엽 부위에 2개(AP-2.4mm) 소뇌부위에 1개를 식립하여 총 5개의 전극을 식립하였다. 4일간의 회복기간을 가진 후 저녁 6시부터 새벽 2시의 시간에 마우스당 2~5일간(하루 6시간) 측정을 시행하였다. 신호는 amplifier(GRASS model 9 EEG/Polysomnograph, GRASS technologies, USA)에 의해 증폭되었으며 pCLAMP program (Molecular Devices, USA)을 이용하여 분석하였다. 또는 RHD2000 amplifier, board(Intan technoloties, USA)와 MATLAB EEGLAB(http://sccn.ucsd.edu/eeglab)을 이용하여 분석하였다.
- [0165] 발작간극파와 비경련성 뇌파발작의 빈도를 측정하기 위하여 10 내지 12시간정도 촬영한 비디오 뇌전도 데이터를 사용하였고 이 데이터로부터 1시간 간격으로 1분의 데이터를 추출하여 분석하였다.
- [0166] 발작간극파와 비경련성 뇌파발작의 빈도는 쥐의 유전형을 모르는 관찰자가 계측하였다. 발작간극파는 200 ms 이하의 간질모양의 파가 일정한 간격으로 나타나며 배경뇌파에 비해 2배이상의 진폭을 가진경우로 정의하였고 비경련성 뇌파발작은 적어도 2개 이상의 이어진 극서파(1~4 Hz)가 배경뇌파에 비해 2배이상의 진폭으로 나타내며 4개의 전극에서 모두 관찰되는 경우로 정의하였다.
- [0167] 도 3b 및 도 12a에서 알 수 있는 바와 같이, 놀랍게도 변이체 mTOR 작제물을 발현하는 쥐의 90% 이상이 간질파를 동반한 자발적 발작을 나타냈고, 간질파는 높은 진폭의 고주파, 높은 진폭의 극서파, 저진폭의 고주파를 보였다. 도 12b에서 알 수 있는 바와 같이, 변이체 작제물을 발현하는 쥐에서 발작간극파 역시 나타나는 것을 확인하였다. 이러한 자발적 발작을 나타내는 마우스는 긴장기, 간대기 후발작기로 이루어진 전신 긴장-간대성 발작을 보이며 이는 FCDII 환자와 유사한 것임을 확인하였다. 또한, 긴장의 뇌파는 저전압, 고주파의 동조된 다주파를 보이고 간대기의 뇌파는 고전압의 일정한 형태를 보이고, 후발작기는 동조된 감쇠 진폭을 보이는 것을 확인하였다. 하지만, 도 3b에서 알 수 있는 바와 같이, 야생형 mTOR 작제물을 발현하는 쥐는 자발적 발작이나 간

질파를 보이지 않았다.

- [0168] p.Leu2427Pro 변이체 작제물을 발현하는 쥐는 평균적으로 생후 약 6주경에 발작이 시작되었으며(도 12e), 이는 사람으로 환산했을 때 FCDII 환자에서 발작이 나타나는 시기(약 4세)와 비슷한 것을 확인하였다. 도 3c에서 알수 있는 바와 같이, 발작의 빈도는 약 하루 6회였다.
- [0169] 발작에 대한 확인이 끝난 후, mTOR 변이체 작제물을 발현하는 쥐가 거대 신경세포와 같은 비정상적인 신경세포 형태를 보이는지 조사하였다.
- [0170] 그 결과, mTOR 변이체 작제물을 전기천공한 대뇌영역의 GFP 양성세포의 세포크기가 매우 증가되어있는 것을 관찰하였다(도 3d).
- [0172] 실시예 6-2. 약물 투여로 인한 자발적 발작 또는 비정상적 신경 세포 변화 확인
- [0173] 자발적 발작 또는 비정상적 신경 세포를 나타내는 상기 동물모델에 대하여 라파마이신을 투여한 후 그 변화를 확인하였다.
- [0174] 구체적으로, 라파마이신과 에베로리무스(LC Labs,USA)를 100% 에탄올에 20mg/ml로 희석하여 원액을 만든 후 -20 에서 보관하였다. 라파마이신을 주사하기 전에 원액을 5% polyethleneglycol400 과 5% Tween80 에 희석하여 lmg/ml 라파마이신과 4% 에탄올 용액을 만들었다. 만들어진 용액을 복강내 주사법으로 1 내지 10 mg/kg의 농도로 2주간 투여하였다(10 mg/kg/d 복강주사, 2주동안).
- [0175] 도 3c, 12c 및 12d에서 알 수 있는 바와 같이, 라파마이신의 투여로 인하여 상기 동물모델에서의 자발적 발작이 거의 나타나지 않으며, 발작간극파와 비경련성 뇌파발작의 빈도가 극적으로 줄어드는 것을 확인하였다.
- [0176] 나아가, 도 3d에서 알 수 있는 바와 같이, 라파마이신의 투여로 인하여 상기 동물모델에서의 비정상적 세포의 크기 또한 감소하는 것을 확인하였다.

[0178] 실시예 7: 서열분석을 통한 난치성 뇌전증 환자군에서 유전변이 확인

- [0179] 환자 시료는 실시예 1 및 2에 기재된 총 77명의 환자에 대해서, 상기 실시예 2의 방법과 실질적으로 동일한 방법으로 환자 시료로부터 게놈DNA 추출하고, 하이브리드 캡쳐 시퀀싱과 PCR을 기반으로 한 앰플리콘 시퀀싱 두가지에서 모두 발견된 유전변이 중 선별 기준(depth 100이상, mutated call 3개 이상, mapping quality 30 이상)을 만족하는 유전변이를 선정한 결과, TSC1, TSC2, AKT3 및 PIK3CA 에서 각각 유전변이가 관찰되었다.
- [0180] 하이브리드 캡쳐 시퀀싱과 PCR을 기반으로 한 앰플리콘 시퀀싱 두가지에서 모두 발견된 유전변이 중 선별 기준 (depth 100이상, mutated call 3개 이상, mapping quality 30 이상)을 만족하는 유전변이를 선정한 결과, SC1, TSC2, AKT3 및 PIK3CA 에서 각각 유전변이가 관찰되었다. TSC1 c.64C>T (p.Arg22Trp), c.610C>T (p.Arg204Cys), c.2432G>T (p.Arg811Leu); TSC2 c.4639C>T (p.Val1547Ile); AKT3 c.740G>A (p.Arg247His), PIK3CA c.3052G>A (p.Asp1018Asn). 총 MTOR 유전변이가 없는 51명의 환자중, 8명의 환자에서 TSC1, TSC2, AKT3 및 PIK3CA 유전자에서 뇌병변 특이적 유전변이를 발견하였다.

丑 5

				_
- [(١1	Q	1	1
-10	, 1	O	1	

					11. 0				
환자/		병리학		단백질	유전자	단백질	Hybrid	PCR	amplicon
/수술니	구이			종류	변이	변이	Capture	sequencing	g
							% Mutated allele	% Mutated	allele
FCD 6 /6yr 9	, ,	Cortical dyslamination Dysmorphic not consistent FCDIIa		TSC1	c.610C>T	p.Arg204Cys	1.75%	1.0%	
1 .		Cortical disturbance large giant	laminar with neurons	PIK3CA	c.3052G>A	p.Asp1018Asn	1.03%	2.30%	

FCD 81/여 /12yr	Cortical dyslamination, Dysmorphic neurons, consistent with FCDIIa	TSC1	c.64C>T	p.Arg22Trp	2.81%	2.0%
HS86/남	Hippocampal sclerosis	AKT3	c.740G>A	p.Arg247His	1.72%	10%
13yr 2m	Cortical dyslamination, Dysmorphic neurons, consistent with FCDIIa	TSC2	c.4639C>T	p.Val1547Ile	1.19%	1.55%
10yr 3m/14yr 3m	Cortical dyslaminati on, Dysmorphic neurons, consistent with FCDIIa	TSC1	c.64C>T	p.Arg22Trp	2.52%	1.98%
FCD 123/ 여/12yr 4m		TSC1	c.64C>T	p.Arg22Trp	2.21%	1.37%
HME141/여 /1yr 9m	Cortical laminar disturbance with large giant neurons		c.2432G>T	p.Arg811Leu	1.03%	1.68%

[0183] 실시예 8: 세포를 이용한 mTOR 과활성 확인

[0184] <u>8-1. 돌연변이 유발 및 TSC1, TSC2, AKT3 변이체 작제물 제작</u>야생형 TSC1, TSC2 또는 AKT3 작제물이 HA-태그되어 있는 pcDNA3(pcDNA3 HA-tagged wild-type TSC1, TSC2, AKT3 construct)을 Addgene (USA)에서 구입하여 QuikChange site-directed mutagenesis kit(200523, Stratagene, USA)와 함께 변이체 벡터를 제조하기 위해 사용하였다.

야생형 TSC1, TSC2 또는 AKT3 작제물이 HA-태그 되어 있는 pcDNA3(pcDNA3 HA-tagged wild-type TSC1, TSC2, AKT3 construct)을 Addgene (USA)에서 구입하였다. pcDNA3 TSC1, TSC2, AKT3 wild-type 벡터에 TSC-1 R22W, R204C의 mutagenesis를 위하여 R22W의 경우에는 TSC-1 R22W-F, R22W-R primer를 사용하였고, R204C의 경우에는 TSC-1 R204C-F, R204C-R primer를 사용하였다. pcDNA3 TSC2 wild-type 벡터에 TSC-2 V1547I의 mutagenesis를 위하여 TSC-2 V1547I-R primer를 사용하였다.pcDNA3 AKT3 wild-type 벡터에 AKT3 R247H의 mutagenesis를 위하여 R247H-F, R247H-R primer를 사용하였다.

[0186] QuikChange II site-directed mutagenesis kit(200523, Stratagene, USA)를 이용하여 point mutation을 만들었다. 각 프라이머는 site specific point mutation sequence 를 포함하고 있어 PCR 시행시 복제되는 서열에 변이가 생기게 된다. 돌연변이 유발을 위해 사용한 프라이머는 아래 표 6에 나타내었다.

丑 6

$\Gamma \Gamma$	۱ 1	07	٦.
II.	, ,	ΔI	

유전자 변이위치		미위치	프라이머		
TSC-1	C64T	R22W	TSC-1 R22W-F	gtcacgtcgtcccacacacccagcatg	29
			TSC-1 R22W-R	catgctgggtgtgtgggacgacgtgac	30
	C610T	R204C	TSC-1 R204C-F	ctttcatactgtaatgagaacacaaaaagga gacgaagttgca	31
			TSC-1 R204C-R	tgcaacttcgtctcctttttgtgttctcatt acagtatgaaag	32
TSC-2	G4639A	V1547I	TSC-2 V1547I-F	tctccaacatacaggatggcgatcttgtggg tg	33
			TSC-2 V1547I-R	cacccacaagatcgccatcctgtatgttgga ga	34
AKT3	G740A	R247H	AKT3 R247H-F	caccatagaaacgtgtgtggtcctcagagaa cacc	35

		AKT3 R247H-R	ggtgttctctgaggaccacacacgtttctat	36
			ggtg	

[0189] 8-2. 세포 배양, 형질도입(transfection) 및 웨스턴 블랏

- [0190] TSC-1, TSC-2 및 AKT3 유전변이가 mTOR 을 과활성시키는지 확인하기 위하여 HEK293T 세포에 야생형과 변이체 벡터를 형질도입하고 mTOR 유전자의 잘 알려진 표지자인 S6K 단백질의 인산화를 웨스턴 블랏으로 확인하였다. 구체적으로, HEK293T cell(thermoscientific)을 10%의 FBS 포함하는 DMEM(Dulbecco's Modified Eagle's Medium) 배지에서 37, 5% CO2 조건으로 배양하였다. 세포는 jetPRIME 형질도입 시약(jetPRIME transfection reagent)(Polyplus, France)를 이용하여 empty flag-tagged 벡터, HA-tagged TSC1 야생형, HA-tagged TSC2 야생형, HA-tagged AKT3 야생형, HA-tagged TSC1 변이체, HA-tagged TSC2 변이체 및 HA-tagged AKT3 변이체를 각각 형질도입하였다.
- [0191] 세포는 형질도입 후 24시간 동안 DMEM 배지에서 0.1%의 FBS로 serum-starved 하고 1 mM의 MgCl₂ 및 CaCl₂를 포함하는 PBS에서 37, 5% CO₂ 조건으로 1시간 동안 배양하였다. 세포는 1%의 Triton X-100, Halt 단백질 분해효소 (Halt protease) 및 phosphatase inhibitor cocktail(78440, Thermo Scientific, USA)을 포함하는 PBS에서 용해(lyse)하였다. 단백질은 SDS-PAGE로 용해(resolve)하고 PVDF 막(membrane)(Milipore, USA)으로 이동시켰다. 막은 0.1%의 Tween 20(TBST)을 포함하는 TBS에서 3%의 BSA로 블락(block)하였다. 그 후, TBST로 4회 반복하여세착하였다. 막은 1/1000로 희석된 anti-phospho-S6-ribosomal 단백질(5364, Cell Signaling Technology, USA), anti-S6 ribosomal 단백질(2217, Cell Signaling Technology, USA) 및 anti-flag M2(8164, Cell Signaling Technology, USA)를 포함하는 1차 항체와 함께 TBST에서 4 로 각각 밤새 배양하였다. 배양 후, 상기막은 TBST로 4회 반복하여 세착하였다. 그 후, 1/5000으로 희석된 HRP-linked anti-rabbit 또는 anti-mouse 이차 항체(secondary antibodies)(7074, Cell Signaling Technology, USA)와 함께 상온에서 2시간 동안 배양하였다. TBST를 세착하고, ECL 반응 시약을 이용하여 immunodetection을 수행하였다.

[0193] 8-3. 변이체를 발현하는 세포에 라파마이신 처리 및 웨스턴 블랏

- [0194] 실시예 8-2에서 변이체를 발현하는 세포에 라파마이신을 처리한 후 S6K 단백질의 인산화 변화를 확인하였다.
- [0195] 구체적으로, 실시예 8-2와 동일한 방법으로, HEK293T cell에 mTOR, TSC1, TSC2, AKT3 변이체를 각각 형질도입하고, 24시간 동안 DMEM 배지에서 Empty DMEM으로 24hr starved 하고 1mM의 MgCl₂ 및 CaCl₂를 포함하는 PBS에서 37, 5% CO₂ 조건으로 1시간 동안 배양과 함께 라파마이신을 처리하였다. 이후, 상기 실시예 2-2와 동일한 방법으로 웨스턴 블랏을 실시하였다.

[0197] 8-4.실험결과

- [0198] 실시예 8-2 및 8-3에 따라, TSC-1의 p.Arg22Trp 및 p.Arg204Cys 유전변이, TSC-2의 p.Val1547Ile 유전변이, AKT3의 p.Arg247His 유전변이가 mTOR 의 활성화 유도 여부를 확인하고자, HEK293T cell에 TSC1, TSC2, AKT3 야 생형과 변이체를 포함하는 벡터를 형질도입하고 mTOR 유전자의 잘 알려진 표지자인 S6K 단백질의 인산화를 웨스턴 블랏으로 확인하고, 상기 변이체를 발현하는 세포에 라파마이신을 처리한 후 S6K 단백질의 인산화 변화를 확인한 결과는 도 15 내지 도 17에 나타냈으며 각 변이 유전자별 결과는 다음과 같다.
- [0199] (1) 세포에서 TSC-1 변이체의 활성 확인
- [0200] 도 15에서 알 수 있는 바와 같이, 변이체 TSC-1을 발현하는 세포에서 S6K 단백질의 인산화가 증가하였고, 라파마이신 처리 후 인산화가 감소하였음을 확인하였다.
- [0201] (2) 세포에서 TSC-2 변이체의 활성 확인
- [0202] 도 16에서 알 수 있는 바와 같이, 변이체 TSC-2를 발현하는 세포에서 S6K 단백질의 인산화가 증가하였고, 라파마이신 처리 후 인산화가 감소하였음을 확인하였다.

- [0203] (3) 세포에서 AKT3 변이체의 활성 확인
- [0204] 도 17에서 알 수 있는 바와 같이, 변이체 AKT3를 발현하는 세포에서 S6K 단백질의 인산화가 증가하였고, 라파마이신 처리 후 인산화가 감소하였음을 확인하였다.

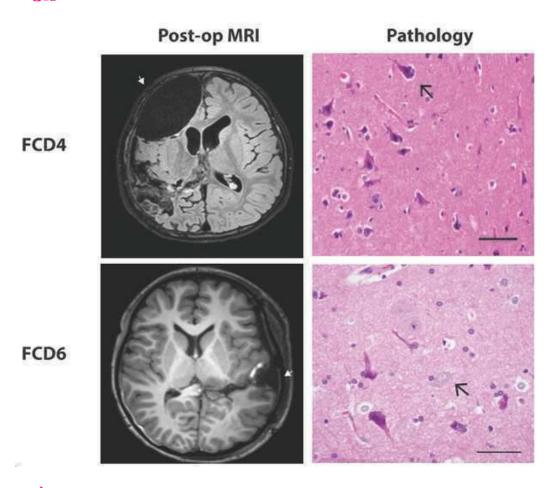
[0206] 실시예 9: TSC1 및 TSC2 변이체가 mTOR 신호전달계 활성화 확인

- [0207] 9-1: Immunoprecipitation assay
- [0208] TSC1 및 TSC2 변이체가 TSC complex 형성을 저해하는지 확인하기 위하여 Immunoprecipitation assay를 시행하였다. 실시예 8-3과 동일한 방법으로 준비한 TSC1 및 TSC2 변이체 단백질을 anti-TSC2 항체(3990,Cell signaling Technology, USA) 또는 anti-myc 항체(2276, cell signaling technology, USA)로 overnight incubation 한 후 단백질 A+G magnetic bead 를 넣고 2시간 동안 incubation 하였다. 이후 1% Triton-X100이 포함된 PBS로 3번 세척 후 37 SDS buffer에서 10분 배양하였다. 단백질을 elution 한 후 SDS/PAGE gel에 용해 시켜 PVDF 막에 흡착시켰다. 블랏팅은 실시예 2-3과 동일한 방법으로 시행하였다.
- [0209] 실험결과를 도 18에 나타냈다. TSC-1의 p.Arg22Trp 및 p.Arg204Cys 변이체는 야생형 TSC-2 단백질과의 결합이 약해져 있음을 확인할 수 있었다. 이를 통해 TSC1 변이체는 TSC complex형성을 저해하여 mTOR 과활성을 유도함을 알 수 있었다.
- [0211] 9-2: GTP-agarose pull down assay
- [0212] Lysis buffer(20 mM Tris-HCl pH: 7.5, 5 mM MgCl2, 2 mM PMSF, 20 ?g/mL leupeptin, 10 ?g/mL aprotinin, 150 mM NaCl and 0.1% Triton X-100)를 사용한 후 초음파를 15초 가하여 세포를 용해시켰다. 이 후 이를 4℃, 13000g에서 세포를 원심분리하여 상층액을 분리하였다. 이 상층액을 온도 4℃, 100 ul의 GTP-agarose beads (Sigma-Aldrich, cat no. G9768) 에서 30분간 배양하였다. 이후 lysis buffer로 세척한 bead로 overnight 배양하였다. GTP-bound 단백질을 추출한 후 immunoblot 으로 확인하였다.
- [0213] TSC2가 과발현되는 경우 TSC2의 substrate 인 GTP-bound Rheb protein 이 감소하여야 하지만 TSC2 p.Val1547Ile 변이체의 경우 TSC2의 GAP(GTPase activating protein)의 기능이 감소하여 GTP-bound Rheb protein 이 감소하지 않고 그대로 유지되는 것을 확인할 수 있었다(도 19). 이를 통해 TSC2 변이체의 경우 GAP domain 기능이상을 유발하여 mTOR pathway 활성을 유발함을 알 수 있었다.
- [0215] 실시예 10: 변이체 mTOR를 발현하는 세포를 이용한, 약물에 의한 S6K 단백질의 인산화 변화 확인
- [0216] <u>10-1</u>. 변이체 mTOR를 발현하는 세포
- [0217] 상기 변이체 mTOR를 발현하는 세포에 약물 (라파마이신, 에베로리무스, 화학식 1 내지 4의 화합물)을 처리한 후 S6K 단백질의 인산화 변화를 확인하였다.
- [0218] 상기 실시예 8-2 및 8-3와 동일한 방법으로, HEK293T cell에 변이체를 형질도입하고, 24시간 동안 DMEM 배지에서 0.1%의 FBS로 serum-starved 하고 1mM의 MgCl2 및 CaCl2를 포함하는 PBS에서 37, 5% CO2 조건으로 1시간 동안 배양한 후, 라파마이신, 에베로리무스, 화학식 1 내지 4의 화합물(Torin1, INK128, AZD8055, GSK2126458)을 처리하였다: Torin은 TOCRIS에서 입수하였고, INK128, AZD8055, GSK2126458 는 Selleckchem에서 입수하였으며, 에베로리무스는 LC laboratory에서 입수하였다. 이후, 실시예 2-4와 동일한 방법으로 웨스턴 블랏을 실시하였다.
- [0219] 도 20 및 도 21에서 알 수 있는 바와 같이, 변이체 mTOR를 발현하는 세포에서 S6K 단백질의 인산화가 라파마이 신에 의해 저해됨을 확인하였다. 구체적으로, 도 20은 mTOR 변이체 C1483R, L2427P 및 L2427Q에 대한 리파마이 신 처리후 S6K 단백질의 인산화 결과를 나타낸 것이다. 도 21는 mTOR 변이체 Y1450D를 발현하는 세포에 리파마이 이신을 처리한 후 S6K 단백질의 인산화 결과를 나타낸 것이다.
- [0220] 도 22은 mTOR 변이체 L2427P를 발현하는 세포에 리파마이신의 처리 농도를, 0, 25, 50, 100, 200 나노몰(nM)으로 처리한 후에 S6 단백질의 인산화 결과를 나타낸 것이다.

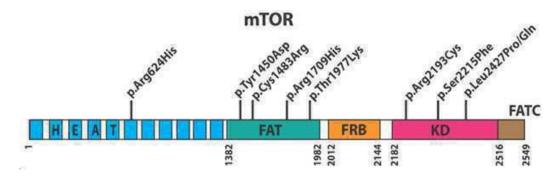
- [0221] 에베로리무스, 화학식 1 내지 4의 화합물 각각을 처리한 후 S6K 단백질의 인산화 변화를 확인하였다. 도 22에서 알 수 있는 바와 같이, 변이체 mTOR를 발현하는 세포에서 S6 단백질의 인산화가 에베로리무스 및 화학식 1 내지 4의 화합물에 의해 저해됨을 확인하였다. 50 nM 이상의 농도에서 S6 단백질의 인산화가 명확히 감소한 것을 확인하였다.
- [0223] 10-2. 다양한 mTOR 저해제 처리 S6K 단백질의 인산화 변화 확인
- [0224] 실시예 9-1과 동일한 방법으로 다양한 변이체 mTOR를 발현하는 세포에 약물로서 라파마이신, 에베로리무스, 화학식 1 내지 4의 화합물)을 처리한 후 S6K 단백질의 인산화 변화를 확인하였다. 구체적으로 실험에 사용한 mTOR 변이체는 R624H, Y1450D, C1483R, R1709H, Y1977K, S2215F, L2427P 및 L2427Q 이었다.
- [0225] 구체적으로, 변이체 mTOR를 발현하는 세포에 에베로리무스, 화학식 1 내지 4의 화합물 각각을 처리한 후 S6K 단백질의 인산화 변화를 확인하였다. 그림에서 알 수 있는 바와 같이, 변이체 mTOR를 발현하는 모든 세포에서 S6K 단백질의 인산화가 에베로리무스 및 화학식 1 내지 4의 화합물에 의해 저해됨을 확인하였으며, 그 결과를 도 23a 및 23b에 나타냈다.
- [0227] 실시예 11: TSC1 또는 TSC 2 변이체를 발현하는 세포를 이용한, 약물에 의한 S6K 단백질의 인산화 변화 확인
- [0228] 실시예 8와 동일한 방법으로, HEK293T cell에 TSC1 또는 TSC 2 변이체를 형질도입하고, 24시간 동안 DMEM 배지에서 0.1%의 FBS로 serum-starved 하고 1mM의 MgCl2 및 CaCl2를 포함하는 PBS에서 37, 5% CO2 조건으로 1시간동안 배양하였다.
- [0229] 그런 후에, 라파마이신, 에베로리무스, 화학식 1 내지 4의 화합물(Torin1, INK128, AZD8055, GSK2126458)을 처리하였다: Torin은 TOCRIS에서 입수하였고, INK128, AZD8055, GSK2126458 는 Selleckchem에서 입수하였으며, 에베로리무스는 LC laboratory에서 입수하였다. 이후, 실시예 10과 동일한 방법으로 웨스턴 블랏을 실시하였다.
- [0230] 상기 변이체 TSC1 또는 TSC2를 발현하는 세포에 라파마이신을 처리한 후 S6K 단백질의 인산화 변화를 확인하였으며, 상기 실험결과로서 변이체 TSC1에 관한 결과를 도 24a 및 24b에 나타냈으며, 변이체 TSC2에 관한 결과를 도 25a 및 25b에 나타냈다.
- [0231] 도 24a 및 24b 및 도 25a 및 25b에 나타낸 바와 같이, 변이체 TSC1 또는 TSC2를 발현하는 세포에서 S6K 단백질의 인산화가 라파마이신에 의해 저해됨을 확인하였다. 상기 변이체 TSC1 또는 TSC2를 발현하는 세포에 에베로리무스, 화학식 1 내지 4의 화합물 각각을 처리한 후 S6K 단백질의 인산화 변화를 확인하였다. 그림에서 알 수 있는 바와 같이, 변이체 TSC1 또는 TSC2를 발현하는 세포에서 S6K 단백질의 인산화가 에베로리무스 및 화학식 1 내지 4의 화합물에 의해 저해됨을 확인하였다.
- [0233] 실시예 12: FCD 환자의 뇌조직 절편의 면역 염색
- [0234] 유전변이를 가진 FCDII 환자가 mTOR 과활성을 보이는지 확인하기 위하여 S6 인산화 단백질과 NeuN(신경세포 표지자)에 대한 항체로 p.Leu2427Pro 유전변이를 가진 FCD 환자의 뇌조직 절편에서 면역염색을 시행하였다.
- [0235] 대뇌피질 발달기형이 아닌 뇌 시료(Non-MCD brain specimen)는 뇌종양(glioblastoma)을 갖는 환자의 종양이 없는 부분(tumor free margin)에서 수술실에서 채집하였고 병리학적으로 종양이 없는 정상 뇌로 확정하였다. 외과적 조직 덩어리(surgical tissue block)는 밤새 새롭게 준비한 phosphate-buffered(PB) 4% paraformaldehyde에서 고정하고, 20% buffered sucrose에서 밤새 동결방지(cryoprotect) 되었고 gelatin-embedded 조직 덩어리(7.5% gelatin in 10% sucrose/PB)로써 -80 ℃에서 보관하였다. 동결절편(Cryostat-cut section)(10um 두께)은 채집되어 유리 슬라이드(glass slide)위에 놓았다. 파라핀을 제거한 FFPE 슬라이드는 citrate buffer로 항원부위 회복을 시행하였다. 이후 상은에서 한 시간 동안 PBS-GT(0.2% gelatin 및 0.2% Triton X-100 in PBS)로 차단(block)하고 다음의 항체들로 염색(stain)하였다: 인산화된 S6 ribosomal 단백질에 대한 토끼 항체(rabbit antibody to phosphorylated S6 ribosomal protein)(Ser240/Ser244)(1:100 dilution; 5364, Cell signaling Technology) 및 NeuN에 대한 마우스 항체(mouse antibody to NeuN)(1:100 dilution; MAB377, Millipore). 샘플은 PBS로 세척하고 다음의 이차 항체로 염색(stain)하였다: 마우스에 대한 Alexa Fluor 555-conjugated 염소항체(Alexa Fluor 555-conjugated goat antibody to mouse)(1:200 dilution; A21422, Invitrogen) 및 토끼에

대한 Alexa Fluor 488-conjugated 염소 항체(Alexa Fluor 488-conjugated goat antibody to rabbit)(1:200 dilution; Al1008, Invitrogen). Mounting 용액(mounting solution)(P36931, Life technology)에 포함된 DAPI는 핵 염색에 사용하였다. Leica DMI3000 B 도립 현미경(inverted microscope)을 이용하여 이미지를 얻었다. NeuN에 양성인 세포 수는 10x 대물렌즈(objective lens)를 이용하여 측정하였다; 뉴런이 풍부한 지역(regine) 내에서 하나의 시료(subject)당 4 내지 5 필드를 얻었고, 지역당 100개 이상의 세포를 기록하였다. DAPI-양성세포의 수는 전체 세포 수를 나타낸다. 뉴런세포 크기는 NeuN 양성 세포에서 ImageJ software의 자동화된 카운팅 프로토콜(automated counting protocol of ImageJ software)(http://rsbweb.nih.gov/ij/)을 이용하여 측정하였으며, 상기 실험결과를 도 26a 내지 26f에 나타냈다.

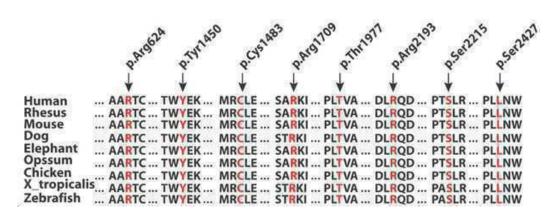
- [0236] 도 26a 내지 26f에 나타낸 바와 같이, TSC1 및 TSC2 유전변이를 가진 FCD64,81,94,98,123 환자에서 인산화된 S6 단백질을 가진 신경세포의 수가 증가되었음을 확인하였다. 반면에, Non-FCD 뇌조직에서는 이러한 증가가 관찰되지 않았다. 도 26b 및 도 26d에서 알 수 있듯이 S6 인산화가 증가한 세포의 비율이 증가하였고 또한 도 26e 및 26f에서 알 수 있는 바와 같이, 병리조직에서 S6단백질의 인산화가 증가한 신경세포의 크기를 측정하였고 그크기가 증가하였음을 확인하였다.
- [0238] 실시예 13: TSC1 또는 TSC2 마우스 모델 제작
- [0239] <u>13-1: TSC1 또는 TSC2를 타겟으로 하는 CRISPR/Cas9 vector 제작</u>
- [0240] pX330 플라스미드(Addgene, #42230)를 구입하여 초기 템플레이트로 사용하였다. QuikChange site-directed mutagenesis kit (Stratagene, La Jolla, CA)를 사용하여 sgRNA(single guide ribonucleotide) 클로닝 사이트 의 BbsI 제한효소 부위(GAAGAC)를 BsaI(GGTCTC) 전환하였다. 이후 TSC1, TSC2를 타겟팅하는 sgRNA를 각각 삽입하였으며 그 염기서열은 아래와 같다.
- [0241] TSC1 : 5'-TGCTGGACTCCTCCACACTG-3' (서열번호 37)
- [0242] TSC2 : 5'-AATCCCAGGTGTGCAGAAGG-3' (서열번호 38)
- [0243] 이후 mcherry 형광 레포터가 포함된 플라스미드(U6-sgRNA-Cas9-IRES-mCherry)를 만들기 위하여 IRES3-mCherry-CL 플라스미드를 템플레이트로 사용하여 PCR 증폭 후 pX330 플라스미드의 Cas9 서열과 NLS 서열 사이에 삽입하였다.
- [0245] 13-2. 마우스모델 제작
- [0246] 임신중인 마우스(E14)(다물사이언스)를 아이소플루레인(isoflurane) (0.4 L/min of oxygen and isoflurane vaporizer gauge 3 during surgery operation)으로 마취하였다. 자궁각(uterine horn)이 노출되고, 개개 배아 (embryo)의 측뇌실(lateral ventricle)에 실시예 19-1에서 제조한 TSC1 또는 TSC2를 타겟으로 하는 U6-sgRNA-Cas9-IRES-mCherry 플라스미드와 붉은 형광을 강화하기 위하여 pCAG-Dsred 플라스미드(addgene #11151)를 구입 하여 3:1의 비율로 희석하여 사용하였다. 희석된 두가지 플라스미드를 2 내지 3ug과 결합한 Fast Green(F7252, Sigma, USA) 2ug/ml을 pulled 모세관(pulled glass capillary)를 이용하여 주입하였다. 플라스미드는 배아의 머리에 900ms의 간격에 100ms의 5번 전기 펄스인 ECM830 eletroporator(BTX-harvard apparatus)로 50V를 방전 하여 전기천공(electroporation) 하였다. 전기천공한 배아를 태어나게 한 후 flashlight(Electron Microscopy Science, USA)로 형광을 발현하는 마우스만을 분류하였다.
- [0248] <u>13-3: TSC1 또는 TSC2 마우스 모델에서 신경세포 이동 분석</u>
- [0249] 실시예 13-2에서 제작한 성인 마우스(P>56)에서 뇌를 수확하였으며, 밤새 새롭게 준비한 phosphate-buffered(PB) 4% paraformaldehyde에서 고정하고, 30% buffered sucrose에서 밤새 동결방지 되었고 gelatin-embedded 조직 덩어리(7.5% gelatin in 10% sucrose/PB)로써 -80 에서 보관하였다.
- [0250] 동결절편(30 um 두께)을 채집하여 유리 슬라이드 위에 놓았다. Mounting 용액(mounting solution)(P36931, Life technology)에 포함된 DAPI는 핵 염색에 사용하였다. 자이스 LSM780 공초점 현미경(Zeiss LSM780 confocal microscope)을 이용하여 이미지를 얻었다. 피질(cortex) 내 전기천공된 세포의 분포를 보여주는 형광

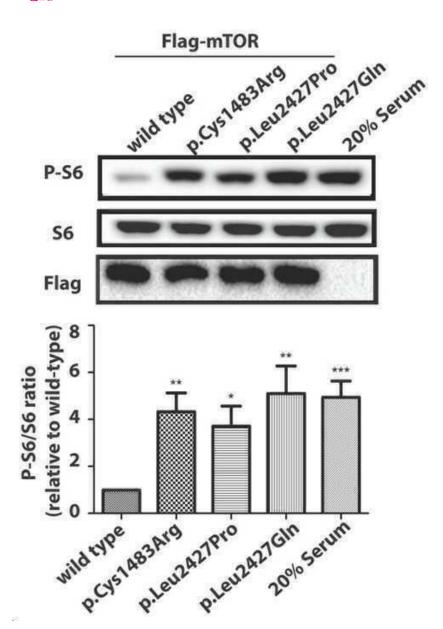

강도(fluorescence intensity)는 명암 값(gray value)으로 전환하고 LayerII/III에서 LayerV/VI까지 ImageJ software(http://rsbweb.nih.gov/ij/)를 이용하여 측정하였다.

- [0251] 도 27a 및 도 27b 에서 알 수 있는 바와 같이, TSC 마우스 모델의 뇌조직 절편에서 dsRed 양성인 신경세포가 Layer II/III에서 감소되었고 대뇌 LayerIV,LayerV/VI에 증가되어 있음을 확인하였다. 이를 통하여, 신경세포의 이동에 문제가 있음을 입증하였다.
- [0253] 13-4: 비디오-뇌전도감시(Video-Electroencephalography monitoring)
- [0254] 마우스가 젖을 땐 후(>3weeks), Video monitoring만을 통해 Seizure 발생 유무를 확인한 후 뇌전도 측정을 위해 전극을 식립하는 수술을 진행하였다. 전극은 경뇌막 상층(epidural layer)에 위치하도록 하였으며 천정점 (Bregma)를 기준으로 전두엽 부위에 2개(AP+1.8mm, ML?1.5mm), 측두엽부위에 2개(AP-2.4mm, ML?2.4mm) 소뇌부위에 1개를 식립하여 총 5개의 전극을 식립하였다. 4일간의 회복기간을 가진 후 저녁 6시부터 새벽 2시의 시간에 마우스당 2~5일간(하루 6시간) 측정을 시행하였다. 신호는RHD2000 amplifier, board(Intan technoloties,USA)를 이용해 증폭하였으며 MATLAB EEGLAB(http://sccn.ucsd.edu/eeglab)을 이용하여 분석하였다.
- [0255] CRISPR/Cas9 플라스미드를 이용하여 TSC1 또는 TSC2 유전자를 대뇌 국소적으로 제거한 쥐에서 간질파를 동반한 자발적 발작을 나타냈고, 간질파는 높은 진폭의 고주파, 높은 진폭의 극서파, 저진폭의 고주파를 보였다. 이러한 자발적 발작을 나타내는 마우스는 긴장기, 간대기 후발작기로 이루어진 전신 긴장-간대성 발작을 보이며 이는 FCDII 환자와 유사한 것임을 확인하였다. 또한, 긴장의 뇌파는 저전압, 고주파의 동조된 다주파를 보이고 간대기의 뇌파는 고전압의 일정한 형태를 보이고, 후발작기는 동조된 감쇠 진폭을 보이는 것을 확인하였다. 발작반도는 하루 약 10회 정도였다.
- [0257] <u>13-5: TSC1 또는 TSC2 마우스 모델의 신경세포 크기 분석</u>
- [0258] 되전도 감시가 끝난 마우스를 phosphate-buffered(PB) 4% paraformalde-hyde로 Masterflex compact peristaltic pump(cole-parmer internation-al,USA)를 이용해 조직관류(perfusion)를 시행하여 뇌를 적출하였다. 새롭게 준비한 phosphate-buffered(PB) 4% paraformaldehyde에서 고정하고, 30% buffered sucrose에서 밤새 동결방지 되었고 gelatin-embedded 조직 덩어리(7.5% gelatin in 10% sucrose/PB)로써 -80 ℃에서 보관하였다. 동결절편(30 um 두께)을 채집하여 유리 슬라이드 위에 놓았다. 상온에서 한 시간 동안 PBS-GT(0.2% gelatin 및 0.2% Triton X-100 in PBS)로 차단(block)하고 다음의 항체들로 염색(stain)하였다: NeuN에 대한 마우스 항체(mouse antibody to NeuN)(1:500 dilution; MAB377, Millipore). 샘플은 PBS로 세척하고 다음의 이차 항체로염색(stain)하였다: 마우스에 대한 Alexa Fluor 488-conjugated 염소 항체(Alexa Fluor 488-conjugated goat antibody to mouse)(1:200 dilution; A11008, Invitrogen), Mounting 용액(mounting solution)(P36931, Life technology)에 포함된 DAPI는 핵 염색에 사용하였다. 자이스 LSM780 공초점 현미경(Zeiss LSM510 confocal microscope)을 이용하여 이미지를 얻었다. 신경세포의 크기는 ImageJ soft-ware(http://rsbweb.nih.gov/ij/)를이용하여 측정하였다
- [0259] CRISPR/Cas9 플라스미드를 이용하여 TSC1 또는 TSC2 유전자를 대뇌 국소적으로 제거한 마우스에서 신경세포는 정상 신경세포에 비해 크기가 유의미하게 증가하였으나, sgRNA 없이 플라스미드만 전기천공한 마우스 신경세포는 크기변화가 없는 것을 확인하였다. 이는 대뇌피질 발달기형 환자에서 나타나는 dysmorphic neuron과 같은 양상이다.
- [0261] 실시예 14: TSC2 마우스모델에서 약물 투여로 인한 자발적 발작 변화 확인
- [0262] 자발적 발작을 나타내는 상기 동물모델에 대하여 라파마이신을 투여한 후 그 변화를 확인하였다. 구체적으로, 라파마이신 (LC Labs,USA)를 100% 에탄올에 20 mg/ml로 희석하여 원액을 만든 후 -20 ℃에서 보관하였다. 라파마이신을 주사하기 전에 원액을 5% polyethleneglycol400 과 5% Tween80 에 희석하여 1 mg/ml 라파마이신과 4% 에탄올 용액을 만들었다. 만들어진 용액을 복강내 주사법으로 1 내지 10 mg/kg의 농도로 2주간 투여하였다(10 mg/kg/d 복강주사, 2주 동안).

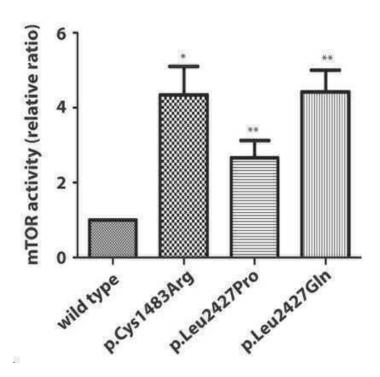

[0263] 도 28에서 알 수 있는 바와 같이, 라파마이신의 투여로 인하여 상기 동물모델에서의 자발적 발작이 거의 나타나 지 않음을 확인하였다.

도면

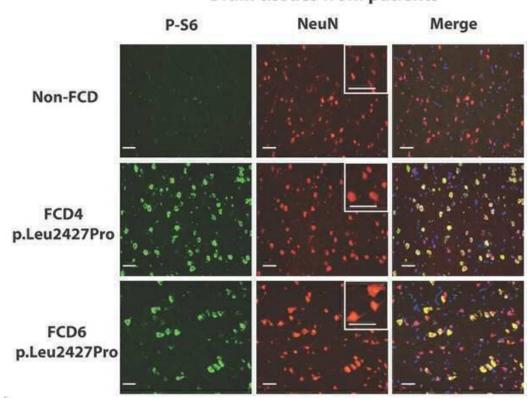

도면1a


도면1b

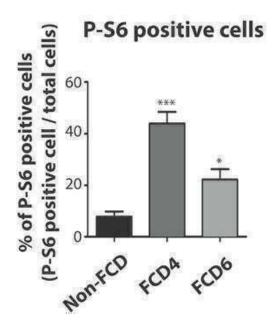
도면1c



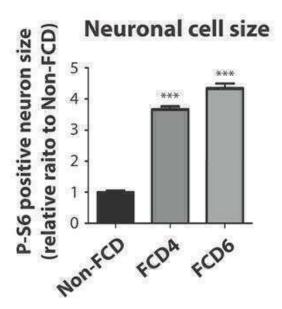
도면2a

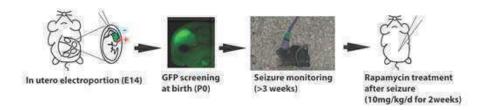

도면2b

In vitro mTOR kinase assay



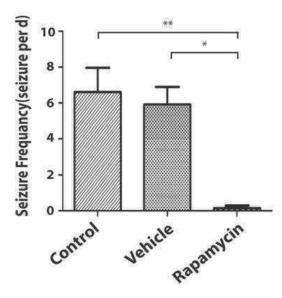
도면2c


Brain tissues from patients

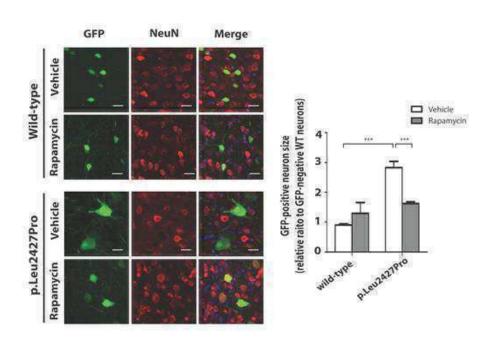

도면2d

도면2e

도면3a

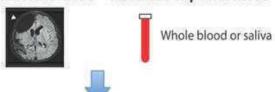


도면3b

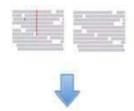

Group	No. of GFP+ pups	No. of mice with seizure	%
Wild type	8	0	0
p.Leu2427Pro	23	21	91.3

도면3c

Behavioral seizure frequency



도면3d



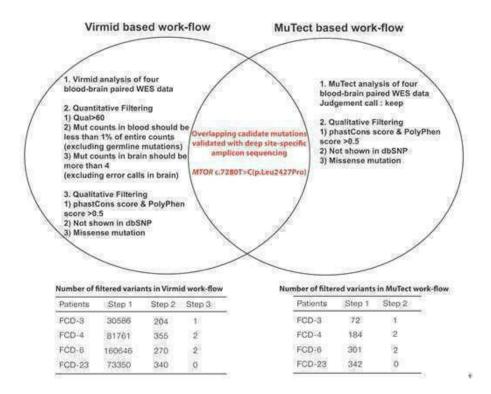
도면4

Deep Whole Exome Sequencing Validated with Site-Specific Amplicon Sequencing in 4 FCDII patients

Mutation Screening & Validation in 73 FCDII patients

Hybrid Capture and Amplicon Sequencing

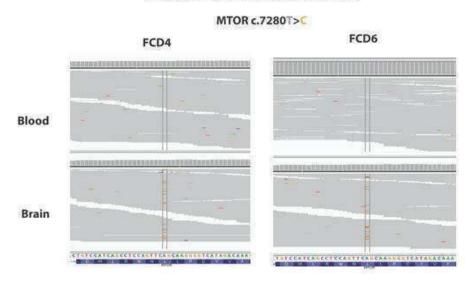
Biological & Pathological Effects



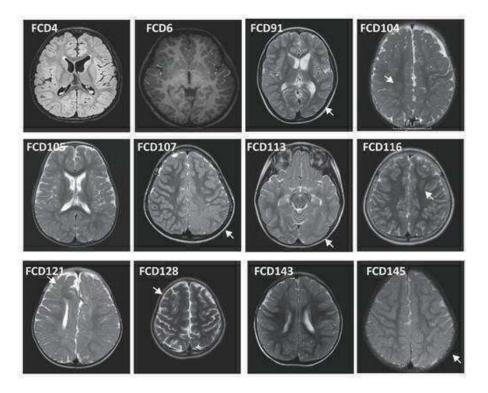
in vitro assays

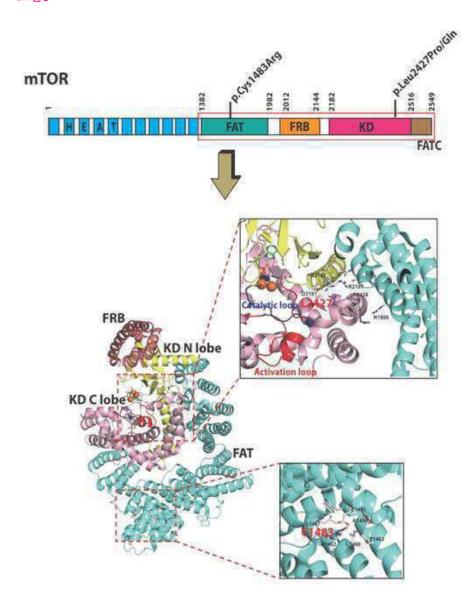
in vivo mutated gene transfer

도면5a

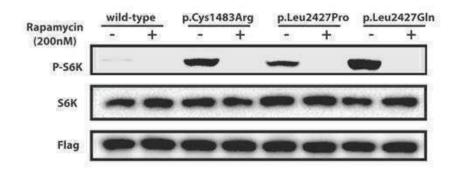

도면5b

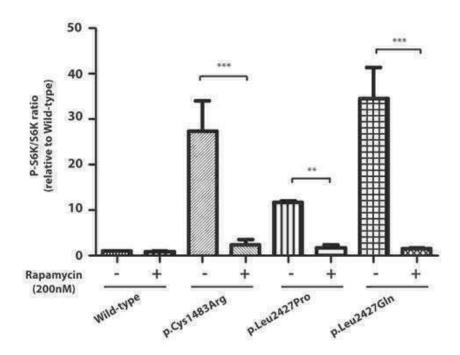
MTOR c.7280T>C (p.Leu2427Pro)

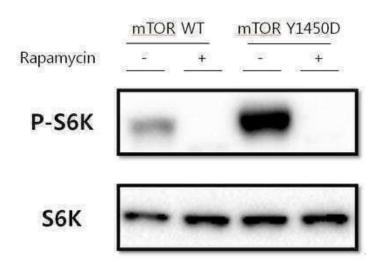

	Deep whole exome sequencing						Deep amplicon sequencing						
	Brain			Blood			Brain			Blood			
	Ref	Mut	%	Ref	Mut	96		Ref	Mut	96	Ref	Mut	.96
FCD4	338	36	9.6	268	0	0	FCD4	150,460	21,751	12.6	937	4	0.43
FCD6	270	20	6.9	417	0	0	FCD6	141,798	11,140	7.3	1262	4	0.32


도면6

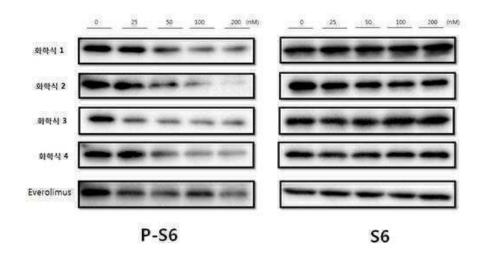
Integrative Genomics Viewer (IGV) data

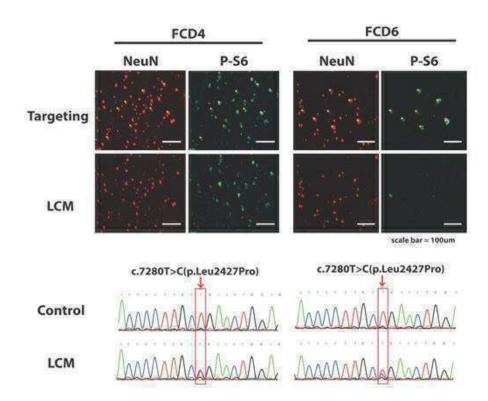


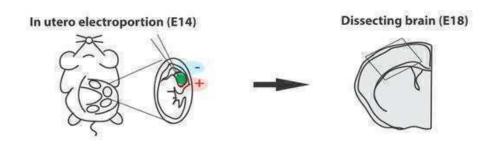

도면7

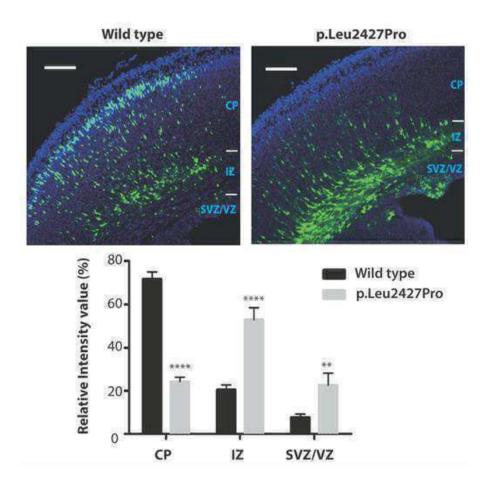


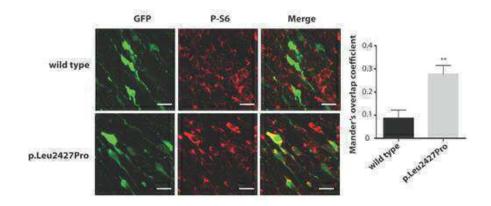
도면9a

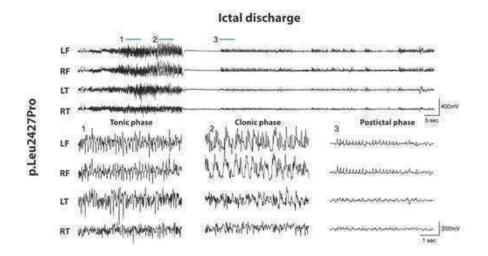


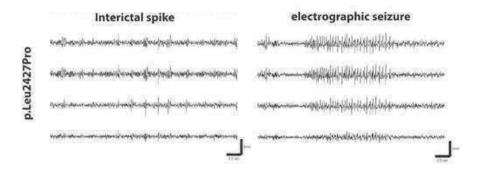

도면9b

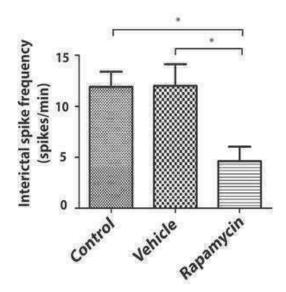

도면9c


도면10


도면11a

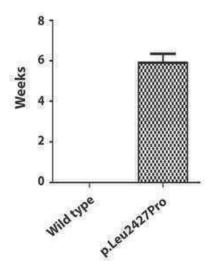

도면11b


도면11c

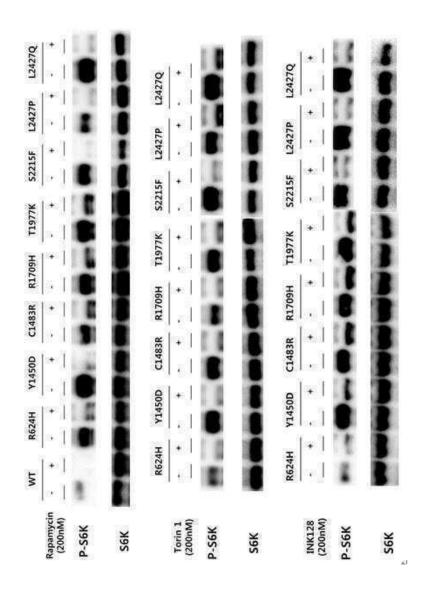

도면12a

도면12b

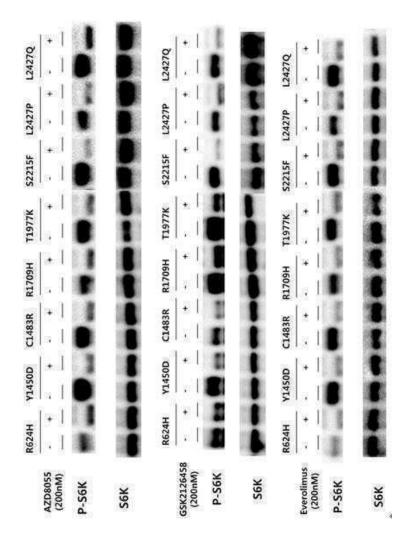
도면12c

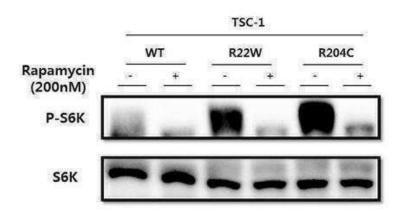


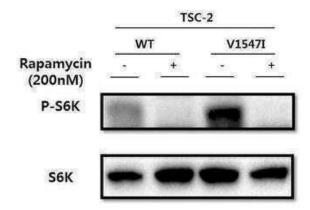
도면12d



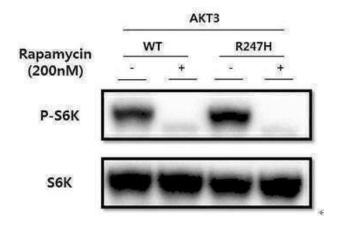
도면12e


Seizure onset

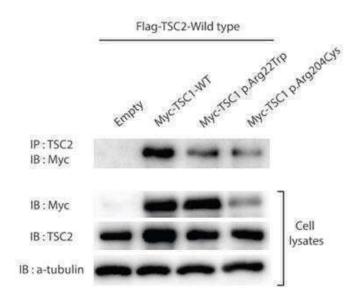

도면13

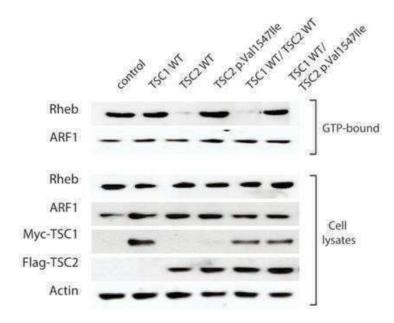


도면14

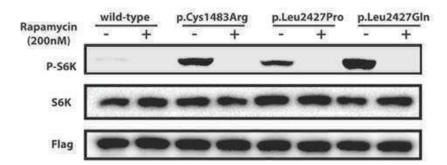


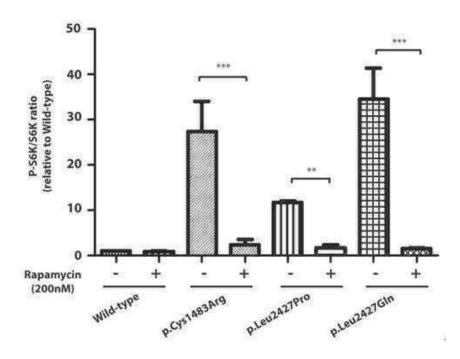
도면15

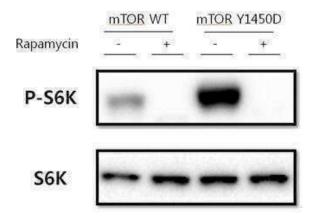


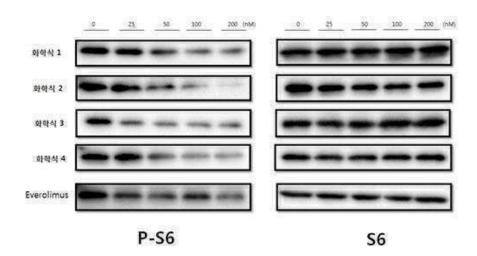


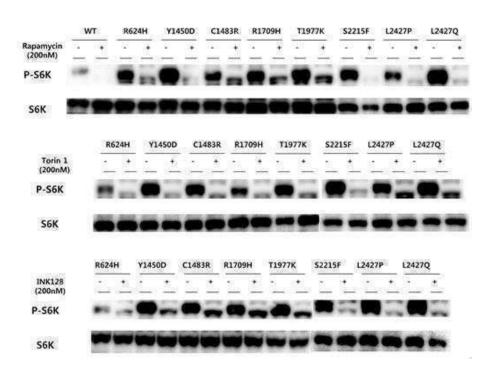
도면17

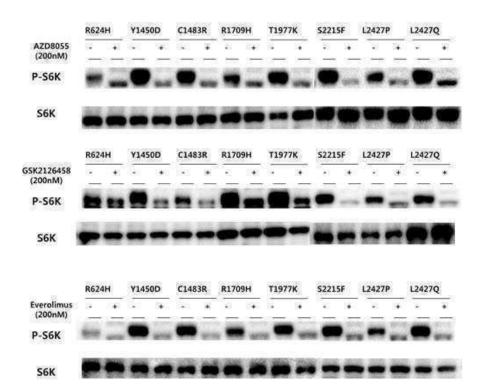


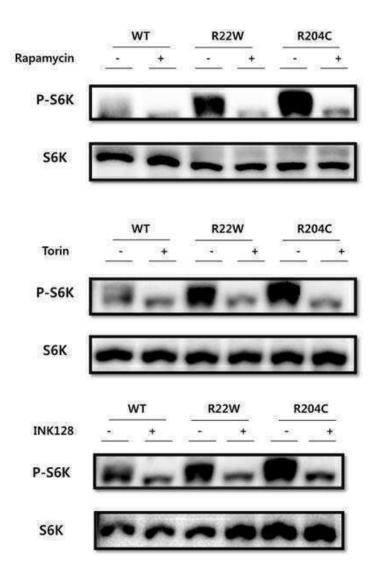

도면18

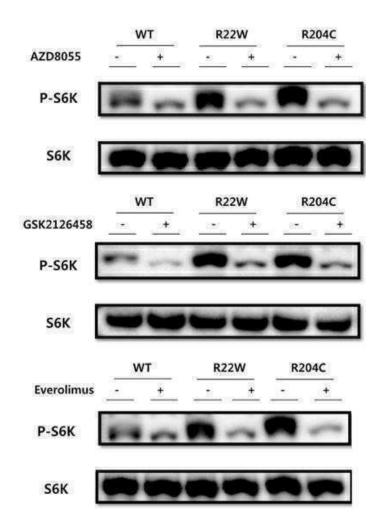


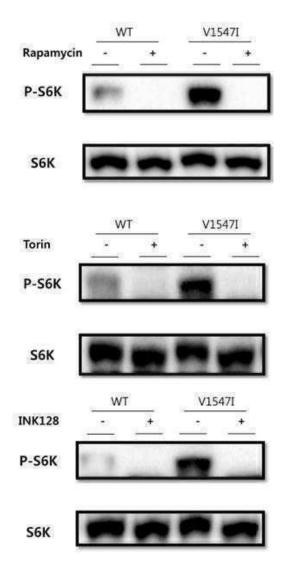

도면20

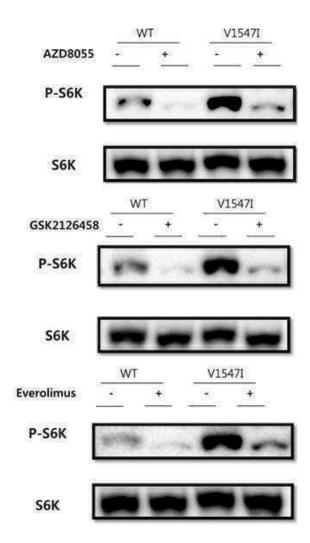


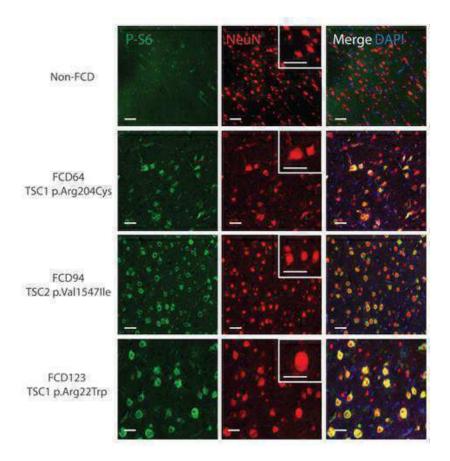

도면22

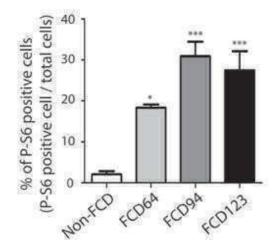

도면23a

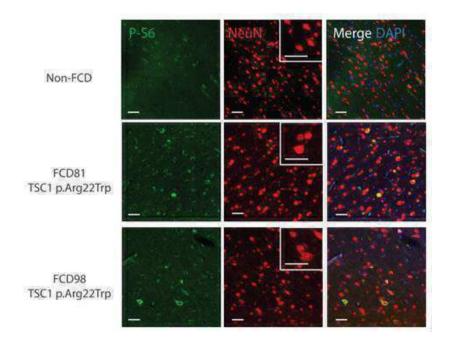

도면23b

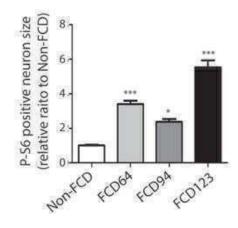

도면24a

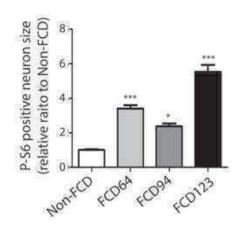

도면24b

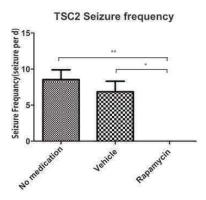

도면25a

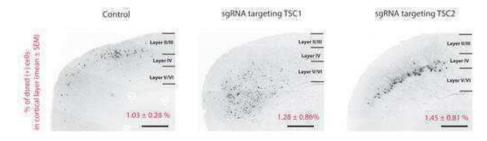

도면25b


도면26a

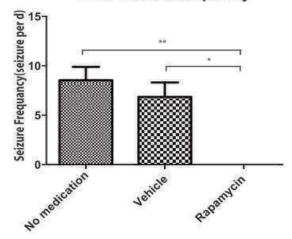

도면26b


도면26c


도면26d


도면26e

도면26f


도면27a

도면27b

TSC2 Seizure frequency

서 열 목 록

<110> KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY

Yonsei University, University - Industry Foundation(UIF)

<120> Composition for diagnosis or treatment of intractable epilepsy

<130> DPP20193485KR

<160> 38

<170> KopatentIn 1.71

<210> 1

<211> 7650

<212> DNA

<213> Homo sapiens

<220><221> gene

<222> (1)..(7650)

<223> wild type mTOR

<400> 1

atgcttggaa ccggacctgc cgccgccacc accgctgcca ccacatctag caatgtgagc 60

gtcctgcagc agtttgccag tggcctaaag agccggaatg aggaaaccag ggccaaagcc 120

gecaaggage tecageacta tgteaceatg gaacteegag agatgagtea agaggagtet 180
actegettet atgaceaact gaaceateae attittgaat tggttteeag eteagatgee 240
aatgagagga aaggtggeat ettggeeata getageetea taggagtgga aggtgggaat 300
gecaeeegaa ttggeagatt tgecaactat etteggaace teeteeete eaatgaeeea 360
gttgteatgg aaatggeate eaaggeeatt ggeegtettg eeatggeagg ggaeaettit 420
acegetgagt aegtggaatt tgaggtgaag egageeetgg aatggetggg tgetgaeege 480

aatgagggcc	ggagacatgc	agctgtcctg	gttctccgtg	agctggccat	cagcgtccct	540
accttcttct	tccagcaagt	gcaacccttc	tttgacaaca	tttttgtggc	cgtgtgggac	600
cccaaacagg	ccatccgtga	gggagctgta	gccgcccttc	gtgcctgtct	gattctcaca	660
acccagcgtg	agccgaagga	gatgcagaag	cctcagtggt	acaggcacac	atttgaagaa	720
gcagagaagg	gatttgatga	gaccttggcc	aaagagaagg	gcatgaatcg	ggatgatcgg	780
atccatggag	ccttgttgat	ccttaacgag	ctggtccgaa	tcagcagcat	ggagggagag	840
cgtctgagag	aagaaatgga	agaaat caca	cagcagcagc	tggtacacga	caagtactgc	900
aaagatctca	tgggcttcgg	aacaaaacct	cgtcacatta	ccccttcac	cagtttccag	960
gctgtacagc	cccagcagtc	aaatgccttg	gtggggctgc	tggggtacag	ctctcaccaa	1020
ggcctcatgg	gatttgggac	ctccccagt	ccagctaagt	ccaccctggt	ggagagccgg	1080
tgttgcagag	acttgatgga	ggagaaattt	gatcaggtgt	gccagtgggt	gctgaaatgc	1140
aggaatagca	agaactcgct	gatccaaatg	acaatcctta	atttgttgcc	ccgcttggct	1200
gcattccgac	cttctgcctt	cacagatacc	cagtatctcc	aagataccat	gaaccatgtc	1260
ctaagctgtg	tcaagaagga	gaaggaacgt	acagcggcct	tccaagccct	ggggctactt	1320
tctgtggctg	tgaggtctga	gtttaaggtc	tatttgcctc	gcgtgctgga	catcatccga	1380
gcggccctgc	ccccaaagga	cttcgcccat	aagaggcaga	aggcaatgca	ggtggatgcc	1440
acagtcttca	cttgcatcag	catgctggct	cgagcaatgg	ggccaggcat	ccagcaggat	1500
atcaaggagc	tgctggagcc	catgctggca	gtgggactaa	gccctgccct	cactgcagtg	1560
ctctacgacc	tgagccgtca	gattccacag	ctaaagaagg	acattcaaga	tgggctactg	1620
aaaatgctgt	ccctggtcct	tatgcacaaa	cccttcgcc	acccaggcat	gcccaagggc	1680
ctggcccatc	agctggcctc	tcctggcctc	acgaccctcc	ctgaggccag	cgatgtgggc	1740
agcatcactc	ttgccctccg	aacgcttggc	agctttgaat	ttgaaggcca	ctctctgacc	1800
caatttgttc	gccactgtgc	ggatcatttc	ctgaacagtg	agcacaagga	gatccgcatg	1860
gaggctgccc	gcacctgctc	ccgcctgctc	acaccctcca	tccacctcat	cagtggccat	1920
	ttagccagac					1980
	taacagatcc					2040
gagcgctttg	atgcacacct	ggcccaggcg	gagaacttgc	aggccttgtt	tgtggctctg	2100
aatgaccagg	tgtttgagat	ccgggagctg	gccatctgca	ctgtgggccg	actcagtagc	2160
atgaaccctg	cctttgtcat	gcctttcctg	cgcaagatgc	tcatccagat	tttgacagag	2220

ttggagcaca gtgggattgg aagaat	caaa gagcagagtg	cccgcatgct	ggggcacctg	2280
gtctccaatg cccccgact catccg	cccc tacatggagc	ctattctgaa	ggcattaatt	2340
ttgaaactga aagatccaga ccctga	tcca aacccaggtg	tgatcaataa	tgtcctggca	2400
acaataggag aattggcaca ggttag	tggc ctggaaatga	ggaaatgggt	tgatgaactt	2460
tttattatca tcatggacat gctcca	ggat tcctctttgt	tggccaaaag	gcaggtggct	2520
ctgtggaccc tgggacagtt ggtggc	cagc actggctatg	tagtagagcc	ctacaggaag	2580
taccctactt tgcttgaggt gctact	gaat tttctgaaga	ctgagcagaa	ccagggtaca	2640
cgcagagagg ccatccgtgt gttagg	gctt ttaggggctt	tggatcctta	caagcacaaa	2700
gtgaacattg gcatgataga ccagtc	ccgg gatgcctctg	ctgtcagcct	gtcagaatcc	2760
aagtcaagtc aggattcctc tgacta	tagc actagtgaaa	tgctggtcaa	catgggaaac	2820
ttgcctctgg atgagttcta cccagc	tgtg tccatggtgg	ccctgatgcg	gatcttccga	2880
gaccagtcac tctctcatca tcacac	catg gttgtccagg	ccatcacctt	catcttcaag	2940
tccctgggac tcaaatgtgt gcagtt	cctg ccccaggtca	tgcccacgtt	ccttaacgtc	3000
attcgagtct gtgatggggc catccg	ggaa tttttgttcc	agcagctggg	aatgttggtg	3060
tcctttgtga agagccacat cagacc	ttat atggatgaaa	tagtcaccct	catgagagaa	3120
ttctgggtca tgaacacctc aattca				3180
gtagctcttg ggggtgaatt taagct				3240
gtcttcatgc atgacaacag cccagg				3300
cagctgtttg gcgccaacct ggatga				3360
ttgtttgatg cccctgaagc tccact				3420
cgcctgacgg agtccctgga tttcac				3480
			C	
				25.40
cgaacactgg accagagccc agaact				3540
gtttttcagc tggggaagaa gtacca				3600
cgacaccgaa tcaatcatca gcgcta				3660
acacttgctg atgaagagga ggatcc				3720
caaggggatg cattggctag tggacc				3780
agcaccatca acctccaaaa ggcctg				3840
ctggaatggc tgagacggct gagcct	ggag cigcigaagg	actcatcatc	gccctccctg	3900
cgctcctgct gggccctggc acaggc	ctac aacccgatgg	ccagggatct	cttcaatgct	3960
gcatttgtgt cctgctggtc tgaact	gaat gaagatcaac	aggatgagct	catcagaagc	4020
atcgagttgg ccctcacctc acaaga	catc gctgaagtca	cacagaccct	cttaaacttg	4080

gctgaattca tggaacac	ag tgacaagggc	ccctgccac	tgagagatga	caatggcatt	4140
gttctgctgg gtgagaga	gc tgccaagtgc	cgagcatatg	ccaaagcact	acactacaaa	4200
gaactggagt tccagaaa	gg ccccacccct	gccattctag	aatctctcat	cagcattaat	4260
aataagctac agcagccg	ga ggcagcggcc	ggagtgttag	aatatgccat	gaaacacttt	4320
ggagagctgg agatccag	gc tacctggtat	gagaaactgc	acgagt ggga	ggatgccctt	4380
gtggcctatg acaagaaa	at ggacaccaac	aaggacgacc	cagagctgat	gctgggccgc	4440
atgcgctgcc tcgaggcc	tt gggggaatgg	ggtcaactcc	accagcagtg	ctgtgaaaag	4500
tggaccctgg ttaatgat	ga gacccaagcc	aagatggccc	ggatggctgc	tgcagctgca	4560
tggggtttag gtcagtgg	ga cagcatggaa	gaatacacct	gtatgatccc	tcgggacacc	4620
catgatgggg cattttat	ag agctgtgctg	gcactgcatc	aggacctctt	ctccttggca	4680
caacagtgca ttgacaag	gc cagggacctg	ctggatgctg	aattaactgc	gatggcagga	4740
gagagttaca gtcgggca	ta tggggccatg	gtttcttgcc	acatgctgtc	cgagctggag	4800
gaggttatcc agtacaaa	ct tgtccccgag	cgacgagaga	tcatccgcca	gatctggtgg	4860
gagagactgc agggctgc	ca gcgtatcgta	gaggactggc	agaaaatcct	tatggtgcgg	4920
tcccttgtgg tcagccct	ca tgaagacatg	agaacctggc	tcaagtatgc	aagcctgtgc	4980
ggcaagagtg gcaggctg	gc tcttgctcat	aaaactttag	tgttgctcct	gggagttgat	5040
ccgtctcggc aacttgac	ca teetetgeea	acagttcacc	ctcaggtgac	ctatgcctac	5100
atgaaaaaca tgtggaag	ag tgcccgcaag	atcgatgcct	tccagcacat	gcagcatttt	5160
gtccagacca tgcagcaa	ca ggcccagcat	gccatcgcta	ctgaggacca	gcagcataag	5220
caggaactgc acaagctc					5280
ctacagggca tcaatgag					5340
gagcacgacc gcagctgg					5400
gtgctacact acaaacat					5460
agcggggcca acatcacc					5520
actgccagca ccgagggc					5580
				0 0	
					5040
accccatcgc cgctgcag					5640
acggtgcctg ccgtccag					5700
caggatacac tcagagtt					5760
gaggccttag tggagggg					5820
cagctcattg caagaatt					5880
ctcacagaca ttggtcgg	ta ccacccccag	gccctcatct	acccactgac	agtggcttct	5940

aagtctacca	cgacagcccg	gcacaatgca	gccaacaaga	ttctgaagaa	catgtgtgag	6000
cacagcaaca	ccctggtcca	gcaggccatg	atggtgagcg	aggagctgat	ccgagtggcc	6060
atcctctggc	atgagatgtg	gcatgaaggc	ctggaagagg	catctcgttt	gtactttggg	6120
gaaaggaacg	tgaaaggcat	gtttgaggtg	ctggagccct	tgcatgctat	gatggaacgg	6180
ggcccccaga	ctctgaagga	aacatccttt	aatcaggcct	atggtcgaga	tttaatggag	6240
gcccaagagt	ggtgcaggaa	gtacatgaaa	tcagggaatg	tcaaggacct	cacccaagcc	6300
tgggacctct	attatcatgt	gttccgacga	atctcaaagc	agctgcctca	gctcacatcc	6360
ttagagctgc	aatatgtttc	cccaaaactt	ctgatgtgcc	gggaccttga	attggctgtg	6420
ccaggaacat	atgaccccaa	ccagccaatc	attcgcattc	agtccatagc	accgtctttg	6480
caagtcatca	catccaagca	gaggccccgg	aaattgacac	ttatgggcag	caacggacat	6540
	tccttctaaa					6600
ctcttcggcc	tggttaacac	ccttctggcc	aatgacccaa	catctcttcg	gaaaaaacctc	6660
agcatccaga	gatacgctgt	catcccttta	tcgaccaact	cgggcctcat	tggctgggtt	6720
ccccactgtg	acacactgca	cgccctcatc	cgggactaca	gggagaagaa	gaagatcctt	6780
ctcaacatcg	agcatcgcat	catgttgcgg	atggctccgg	actatgacca	cttgactctg	6840
at acaasaaa	tggaggtgtt	t gaggat geg	at caat aat a	caact aagaa	casect agec	6900
						6960
	ggctgaaaag					7020
	tagcggtcat					7020
	tgatgctgga					7140
	ttgctatgac					7200
	ccaatgctat					
cacacagiga	tggaggtgct	gcgagagcac	aaggacagtg	tcatggccgt	gctggaagcc	7260
tttgtctatg	accccttgct	gaactggagg	ctgatggaca	caaataccaa	aggcaacaag	7320
cgatcccgaa	cgaggacgga	ttcctactct	gctggccagt	cagtcgaaat	tttggacggt	7380
gtggaacttg	gagagccagc	ccataagaaa	acggggacca	cagtgccaga	atctattcat	7440
tctttcattg	gagacggttt	ggtgaaacca	gaggccctaa	ataagaaagc	tatccagatt	7500
attaacaggg	ttcgagataa	gctcactggt	cgggacttct	ctcatgatga	cactttggat	7560
gttccaacgc	aagttgagct	gctcatcaaa	caagcgacat	cccatgaaaa	cctctgccag	7620
tgctatattg	gctggtgccc	tttctggtaa				7650

<210> 2 <211> 2549 <212> PRT <213> Homo sapiens <220><221> PEPTIDE <222> (1)..(2549) <223> wild type mTOR <400> 2 Met Leu Gly Thr Gly Pro Ala Ala Ala Thr Thr Ala Ala Thr Thr Ser 5 1 10 15 Ser Asn Val Ser Val Leu Gln Gln Phe Ala Ser Gly Leu Lys Ser Arg 25 Asn Glu Glu Thr Arg Ala Lys Ala Ala Lys Glu Leu Gln His Tyr Val 35 40 45 Thr Met Glu Leu Arg Glu Met Ser Gln Glu Glu Ser Thr Arg Phe Tyr 55 60 Asp Gln Leu Asn His His Ile Phe Glu Leu Val Ser Ser Ser Asp Ala 65 75 Asn Glu Arg Lys Gly Gly Ile Leu Ala Ile Ala Ser Leu Ile Gly Val 90 85 95 Glu Gly Gly Asn Ala Thr Arg Ile Gly Arg Phe Ala Asn Tyr Leu Arg 100 105 Asn Leu Leu Pro Ser Asn Asp Pro Val Val Met Glu Met Ala Ser Lys 115 120 125 Ala Ile Gly Arg Leu Ala Met Ala Gly Asp Thr Phe Thr Ala Glu Tyr 135 Val Glu Phe Glu Val Lys Arg Ala Leu Glu Trp Leu Gly Ala Asp Arg 150 155 Asn Glu Gly Arg Arg His Ala Ala Val Leu Val Leu Arg Glu Leu Ala 165 170 175 Ile Ser Val Pro Thr Phe Phe Phe Gln Gln Val Gln Pro Phe Phe Asp

185

180

Asn	Ile	Phe	Val	Ala	Val	Trp	Asp	Pro	Lys	Gln	Ala	Ile	Arg	Glu	Gly
		195					200					205			
Ala	Val	Ala	Ala	Leu	Arg	Ala	Cys	Leu	Ile	Leu	Thr	Thr	Gln	Arg	Glu
	210					215					220				
Pro	Lys	Glu	Met	Gln	Lys	Pro	Gln	Trp	Tyr	Arg	His	Thr	Phe	Glu	Glu
225					230					235					240
Ala	Glu	Lys	Gly	Phe	Asp	Glu	Thr	Leu	Ala	Lys	Glu	Lys	Gly	Met	Asn
				245					250					255	
Arg	Asp	Asp	Arg	Ile	His	Gly	Ala	Leu	Leu	Ile	Leu	Asn	Glu	Leu	Val
			260					265					270		
Arg	Ile	Ser		Met	Glu	Gly	Glu	Arg	Leu	Arg	Glu	Glu	Met	Glu	Glu
J		275				J	280	Ü		J		285			
Ile	Thr		Gln	Gln	Leu	Val		Asp	Lys	Tyr	Cys		Asp	Leu	Met
	290					295					300				
Gly	Phe	Gly	Thr	Lys	Pro	Arg	His	Ile	Thr	Pro	Phe	Thr	Ser	Phe	Gln
305					310					315					320
Ala	Val	Gln	Pro	Gln	Gln	Ser	Asn	Ala	Leu	Val	Gly	Leu	Leu	Gly	Tyr
				325					330					335	
Ser	Ser	His	Gln	Glv	Len	Met	Glv	Phe	Glv	Thr	Ser	Pro	Ser	Pro	Ala
GCI	oci	1110	340	ary	Deu	nic c	ury	345	uly	1111	Der	110	350	110	mu
Lvs	Ser	Thr		Val	Glu	Ser	Aro		Cvs	Aro	Asn	Len		Glu	Glu
L) U	JC1	355	Beu	, ai	uru	501	360	0,0	0,5	8	пор	365	nic c	uru	uru
Lvs	Phe		Gln	Val	Cvs	Gln		Val	Leu	Lvs	Cvs		Asn	Ser	Lvs
-, -	370				-3-	375				-3-	380	8			-3 -
Asn	Ser	Leu	Ile	Gln	Met		Ile	Leu	Asn	Leu		Pro	Arg	Leu	Ala
385					390					395			Ü		400
	Phe	Arg	Pro	Ser		Phe	Thr	Asp	Thr		Tyr	Leu	Gln	Asp	Thr
				40E					410					/1E	
Mot	Λ ~ ~	ш: ~	Ve 1	405	C	Crra	Ve 1	I ***	410	C1	I ***	C1	Λ	415	Λ1 a
мет	Asn	піѕ		Leu	ser	Cys	val		LYS	ulu	LYS	ulu		ınr	ніа
A 1	ים	C1	420	т.	01	т		425	77 -	A 1	77 -	4	430	C1	Di
Ala	Phe	Gln	Ala	Leu	Gly	Leu	Leu	Ser	val	Ala	val	Arg	Ser	Glu	Phe

440

435

Lys	Val	Tyr	Leu	Pro	Arg	Val	Leu	Asp	Ile	Ile	Arg	Ala	Ala	Leu	Pro
	450					455					460				
Pro	Lys	Asp	Phe	Ala	His	Lys	Arg	Gln	Lys	Ala	Met	Gln	Val	Asp	Ala
465					470					475					480
Thr	Val	Phe	Thr	Cys	Ile	Ser	Met	Leu	Ala	Arg	Ala	Met	Gly	Pro	Gly
				485					490					495	
Ile	Gln	Gln	Asp	Ile	Lys	Glu	Leu	Leu	Glu	Pro	Met	Leu	Ala	Val	Gly
			500					505					510		
Leu	Ser	Pro	Ala	Leu	Thr	Ala	Val	Leu	Tyr	Asp	Leu	Ser	Arg	Gln	Ile
		515					520					525			
Pro	Gln	Leu	Lys	Lys	Asp	Ile	Gln	Asp	Gly	Leu	Leu	Lys	Met	Leu	Ser
	530					535					540				
Leu	Val	Leu	Met	His	Lys	Pro	Leu	Arg	His	Pro	Gly	Met	Pro	Lys	Gly
545					550					555					560
Leu	Ala	His	Gln	Leu	Ala	Ser	Pro	Gly	Leu	Thr	Thr	Leu	Pro	Glu	Ala
				565					570					575	
Ser	Asp	Val	Gly	Ser	Ile	Thr	Leu	Ala	Leu	Arg	Thr	Leu	Gly	Ser	Phe
			580					585					590		
Glu	Phe	Glu	Gly	His	Ser	Leu	Thr	Gln	Phe	Val	Arg	His	Cys	Ala	Asp
		595					600					605			
His	Phe	Leu	Asn	Ser	Glu	His	Lys	Glu	Ile	Arg	Met	Glu	Ala	Ala	Arg
	610					615					620				
Thr	Cys	Ser	Arg	Leu	Leu	Thr	Pro	Ser	Ile	His	Leu	Ile	Ser	Gly	His
625					630					635					640
Ala	His	Val	Val	Ser	Gln	Thr	Ala	Val	Gln	Val	Val	Ala	Asp	Val	Leu
				645					650					655	
Ser	Lys	Leu	Leu	Val	Val	Gly	Ile	Thr	Asp	Pro	Asp	Pro	Asp	Ile	Arg
			660					665					670		
Tyr	Cys	Val	Leu	Ala	Ser	Leu	Asp	Glu	Arg	Phe	Asp	Ala	His	Leu	Ala
		675					680					685			
Gln	Ala	Glu	Asn	Leu	Gln	Ala	Leu	Phe	Val	Ala	Leu	Asn	Asp	Gln	Val

690		695	700)
Phe Glu Ile A	Arg Glu Leu	Ala Ile Cys	Thr Val Gly	Arg Leu Ser Ser
705	710		715	720
Met Asn Pro A	Ala Phe Val	Met Pro Phe	Leu Arg Lys	Met Leu Ile Gln
	725		730	735
Ile Leu Thr G	Glu Leu Glu	His Ser Gly	Ile Gly Arg	; Ile Lys Glu Gln
7	740	745		750
Ser Ala Arg M	Met Leu Gly	His Leu Val	Ser Asn Ala	Pro Arg Leu Ile
755		760		765
Arg Pro Tyr M	Met Glu Pro	Ile Leu Lys	Ala Leu Ile	Leu Lys Leu Lys
770		775	780	
Asp Pro Asp F	Pro Asp Pro	Asn Pro Gly	Val Ile Asr	Asn Val Leu Ala
785	790		795	800
Thr Ile Gly G	Glu Leu Ala	Gln Val Ser	Gly Leu Glu	Met Arg Lys Trp
	805		810	815
Val Asp Glu I	Leu Phe Ile	Ile Ile Met	Asp Met Leu	Gln Asp Ser Ser
8	320	825		830
Leu Leu Ala I	Lys Arg Gln	Val Ala Leu	Trp Thr Leu	Gly Gln Leu Val
835		840		845
Ala Ser Thr G	Gly Tyr Val	Val Glu Pro	Tyr Arg Lys	Tyr Pro Thr Leu
850		855	860	
Leu Glu Val I	Leu Leu Asn	Phe Leu Lys	Thr Glu Glr	Asn Gln Gly Thr
865	870		875	880
Arg Arg Glu A	Ala Ile Arg	Val Leu Gly	Leu Leu Gly	Ala Leu Asp Pro
	885		890	895
Tyr Lys His L	Lys Val Asn	Ile Gly Met	Ile Asp Glr	Ser Arg Asp Ala
Q	900	905		910
Ser Ala Val S	Ser Leu Ser	Glu Ser Lys	Ser Ser Glr	Asp Ser Ser Asp
915		920		925
Tyr Ser Thr S	Ser Glu Met	Leu Val Asn	Met Gly Asr	Leu Pro Leu Asp
930		935	940)
Glu Phe Tyr F	Pro Ala Val	Ser Met Val	Ala Leu Met	Arg Ile Phe Arg

Asp Gln Ser Leu Ser His His His Thr Met Val Val Gln Ala Ile Thr Phe Ile Phe Lys Ser Leu Gly Leu Lys Cys Val Gln Phe Leu Pro Gln Val Met Pro Thr Phe Leu Asn Val Ile Arg Val Cys Asp Gly Ala Ile Arg Glu Phe Leu Phe Gln Gln Leu Gly Met Leu Val Ser Phe Val Lys Ser His Ile Arg Pro Tyr Met Asp Glu Ile Val Thr Leu Met Arg Glu Phe Trp Val Met Asn Thr Ser Ile Gln Ser Thr Ile Ile Leu Leu Ile Glu Gln Ile Val Val Ala Leu Gly Gly Glu Phe Lys Leu Tyr Leu Pro Gln Leu Ile Pro His Met Leu Arg Val Phe Met His Asp Asn Ser Pro Gly Arg Ile Val Ser Ile Lys Leu Leu Ala Ala Ile Gln Leu Phe Gly Ala Asn Leu Asp Asp Tyr Leu His Leu Leu Leu Pro Pro Ile Val Lys Leu Phe Asp Ala Pro Glu Ala Pro Leu Pro Ser Arg Lys Ala Ala Leu Glu Thr Val Asp Arg Leu Thr Glu Ser Leu Asp Phe Thr Asp Tyr Ala Ser Arg Ile Ile His Pro Ile Val Arg Thr Leu Asp Gln Ser Pro Glu Leu Arg Ser Thr Ala Met Asp Thr Leu Ser Ser Leu Val Phe Gln Leu Gly Lys Lys Tyr Gln Ile Phe Ile Pro Met Val Asn Lys Val Leu Val

Arg His Arg	Ile Asn	His G	Gln Arg	Tyr Asp	Val Leu	Ile Cys Arg Ile
	1205			1210		1215
Val Lys Gly	Tyr Thr	Leu A	Ala Asp	Glu Glu	Glu Asp	Pro Leu Ile Tyr
	1220]	1225		1230
Gln His Arg	Met Leu	Arg S	Ser Gly	Gln Gly	Asp Ala	Leu Ala Ser Gly
1235			1240			1245
Pro Val Glu	Thr Gly	Pro M	Met Lys	Lys Leu	His Val	Ser Thr Ile Asn
1250		12	255		1260	
Leu Gln Lys	Ala Trp	Gly A	Ala Ala	Arg Arg	Val Ser	Lys Asp Asp Trp
1265		1270			1275	1280
Leu Glu Trp	Leu Arg	Arg L	Leu Ser	Leu Glu	Leu Leu	Lys Asp Ser Ser
	1285			1290		1295
Ser Pro Ser	Leu Arg	Ser C	Cys Trp	Ala Leu	Ala Gln	Ala Tyr Asn Pro
	1300			1305		1310
Met Ala Arg	Asp Leu	Phe A	Asn Ala	Ala Phe	Val Ser	Cys Trp Ser Glu
1315			1320			1325
Leu Asn Glu	Asp Gln	Gln A	Asp Glu	Leu Ile	Arg Ser	Ile Glu Leu Ala
1330		13	335		1340	
Lou Thr Sor	Cln Asp	Ilo A	Ala Glu	Val Thr	Cln Thr	Leu Leu Asn Leu
1345		1350	nia uiu		1355	1360
			San Aan		1000	1300
Ala diu ille	Met Giu	1112		Ive Cly	Pro Lou	Pro Lou Arg Aco
	1365		ser asp		Pro Leu	Pro Leu Arg Asp
Acn Acn Gly	1365			1370		1375
	Ile Val		Leu Gly	1370 Glu Arg		1375 Lys Cys Arg Ala
	Ile Val 1380	Leu I	Leu Gly	1370 Glu Arg 1385	Ala Ala	1375 Lys Cys Arg Ala 1390
Tyr Ala Lys	Ile Val 1380	Leu I	Leu Gly Tyr Lys	1370 Glu Arg 1385	Ala Ala Glu Phe	1375 Lys Cys Arg Ala 1390 Gln Lys Gly Pro
Tyr Ala Lys	Ile Val 1380 Ala Leu	Leu L	Leu Gly Tyr Lys 1400	1370 Glu Arg 1385 Glu Leu	Ala Ala Glu Phe	1375 Lys Cys Arg Ala 1390 Gln Lys Gly Pro
Tyr Ala Lys	Ile Val 1380 Ala Leu	Leu L	Leu Gly Tyr Lys 1400	1370 Glu Arg 1385 Glu Leu	Ala Ala Glu Phe	1375 Lys Cys Arg Ala 1390 Gln Lys Gly Pro
Tyr Ala Lys 1395 Thr Pro Ala	Ile Val 1380 Ala Leu	Leu L His T	Leu Gly Tyr Lys 1400 Ser Leu	1370 Glu Arg 1385 Glu Leu	Ala Ala Glu Phe Ile Asn	1375 Lys Cys Arg Ala 1390 Gln Lys Gly Pro 1405 Asn Lys Leu Gln
Tyr Ala Lys 1395 Thr Pro Ala	Ile Val 1380 Ala Leu Ile Leu	Leu I His T Glu S	Leu Gly Tyr Lys 1400 Ser Leu 415	1370 Glu Arg 1385 Glu Leu Ile Ser	Ala Ala Glu Phe Ile Asn 1420	1375 Lys Cys Arg Ala 1390 Gln Lys Gly Pro 1405 Asn Lys Leu Gln
Tyr Ala Lys 1395 Thr Pro Ala	Ile Val 1380 Ala Leu Ile Leu	Leu I His T Glu S	Leu Gly Tyr Lys 1400 Ser Leu 415	1370 Glu Arg 1385 Glu Leu Ile Ser Leu Glu	Ala Ala Glu Phe Ile Asn 1420 Tyr Ala	1375 Lys Cys Arg Ala 1390 Gln Lys Gly Pro 1405 Asn Lys Leu Gln
Tyr Ala Lys 1395 Thr Pro Ala	Ile Val 1380 Ala Leu Ile Leu Ala Ala	Leu I His T Glu S	Leu Gly Tyr Lys 1400 Ser Leu 415	1370 Glu Arg 1385 Glu Leu Ile Ser Leu Glu	Ala Ala Glu Phe Ile Asn 1420	1375 Lys Cys Arg Ala 1390 Gln Lys Gly Pro 1405 Asn Lys Leu Gln

1445

1455

Glu Asp Ala Leu Val Ala Tyr Asp Lys Lys Met Asp Thr Asn Lys Asp Asp Pro Glu Leu Met Leu Gly Arg Met Arg Cys Leu Glu Ala Leu Gly Glu Trp Gly Gln Leu His Gln Gln Cys Cys Glu Lys Trp Thr Leu Val Asn Asp Glu Thr Gln Ala Lys Met Ala Arg Met Ala Ala Ala Ala Ala Trp Gly Leu Gly Gln Trp Asp Ser Met Glu Glu Tyr Thr Cys Met Ile Pro Arg Asp Thr His Asp Gly Ala Phe Tyr Arg Ala Val Leu Ala Leu His Gln Asp Leu Phe Ser Leu Ala Gln Gln Cys Ile Asp Lys Ala Arg Asp Leu Leu Asp Ala Glu Leu Thr Ala Met Ala Gly Glu Ser Tyr Ser Arg Ala Tyr Gly Ala Met Val Ser Cys His Met Leu Ser Glu Leu Glu Glu Val Ile Gln Tyr Lys Leu Val Pro Glu Arg Arg Glu Ile Ile Arg Gln Ile Trp Trp Glu Arg Leu Gln Gly Cys Gln Arg Ile Val Glu Asp

Trp Gln Lys I le Leu Met Val Arg Ser Leu Val Val Ser Pro His Glu

1635

Asp Met Arg Thr Trp Leu Lys Tyr Ala Ser Leu Cys Gly Lys Ser Gly

1650

Arg Leu Ala Leu Ala His Lys Thr Leu Val Leu Leu Gly Val Asp

1665

1670

1680

Pro Ser Arg Gln Leu Asp His Pro Leu Pro Thr Val His Pro Gln Val

1685

Thr Tyr Ala Tyr Met Lys Asn Met Trp Lys Ser Ala Arg Lys I le Asp

1700	1'	705	1710
Ala Phe Gln His Met	Gln His Phe	Val Gln Thr M	Met Gln Gln Gln Ala
1715	1720		1725
Gln His Ala Ile Ala	Thr Glu Asp (Gln Gln His L	ys Gln Glu Leu His
1730	1735	17	740
Lys Leu Met Ala Arg	Cys Phe Leu l	Lys Leu Gly G	Glu Trp Gln Leu Asn
1745	1750	1755	1760
Leu Gln Gly Ile Asn	Glu Ser Thr	Ile Pro Lys V	Val Leu Gln Tyr Tyr
1765		1770	1775
Ser Ala Ala Thr Glu	His Asp Arg	Ser Trp Tyr L	ys Ala Trp His Ala
1780	1'	785	1790
Trp Ala Val Met Asn	Phe Glu Ala	Val Leu His T	Tyr Lys His Gln Asn
1795	1800		1805
Gln Ala Arg Asp Glu	Lys Lys Lys l	Leu Arg His A	Ala Ser Gly Ala Asn
1810	1815	18	320
Ile Thr Asn Ala Thr	Thr Ala Ala '	Thr Thr Ala A	Ala Thr Ala Thr Thr
1825	1830	1835	1840
1825 Thr Ala Ser Thr Glu			
Thr Ala Ser Thr Glu	Gly Ser Asn	Ser Glu Ser G	Glu Ala Glu Ser Thr
Thr Ala Ser Thr Glu	Gly Ser Asn	Ser Glu Ser G	Glu Ala Glu Ser Thr 1855
Thr Ala Ser Thr Glu 1845 Glu Asn Ser Pro Thr	Gly Ser Asn	Ser Glu Ser G 1850 Leu Gln Lys L	Glu Ala Glu Ser Thr 1855 Lys Val Thr Glu Asp
Thr Ala Ser Thr Glu 1845 Glu Asn Ser Pro Thr 1860	Gly Ser Asn S	Ser Glu Ser G 1850 Leu Gln Lys L 865	Glu Ala Glu Ser Thr 1855 Lys Val Thr Glu Asp 1870
Thr Ala Ser Thr Glu 1845 Glu Asn Ser Pro Thr 1860 Leu Ser Lys Thr Leu	Pro Ser Pro l	Ser Glu Ser G 1850 Leu Gln Lys L 865	I855 Lys Val Thr Glu Asp 1870 Ala Val Gln Gly Phe
Thr Ala Ser Thr Glu 1845 Glu Asn Ser Pro Thr 1860 Leu Ser Lys Thr Leu 1875	Pro Ser Pro 1 Leu Met Tyr	Ser Glu Ser G 1850 Leu Gln Lys L 865 Thr Val Pro A	1855 Lys Val Thr Glu Asp 1870 Ala Val Gln Gly Phe 1885
Thr Ala Ser Thr Glu 1845 Glu Asn Ser Pro Thr 1860 Leu Ser Lys Thr Leu 1875 Phe Arg Ser Ile Ser	Pro Ser Pro 1 Leu Met Tyr 1880 Leu Ser Arg	Ser Glu Ser G 1850 Leu Gln Lys L 865 Thr Val Pro A Gly Asn Asn L	1855 Lys Val Thr Glu Asp 1870 Ala Val Gln Gly Phe 1885 Leu Gln Asp Thr Leu
Thr Ala Ser Thr Glu 1845 Glu Asn Ser Pro Thr 1860 Leu Ser Lys Thr Leu 1875 Phe Arg Ser Ile Ser 1890	Pro Ser Pro 1 Leu Met Tyr 1880 Leu Ser Arg (Ser Glu Ser G 1850 Leu Gln Lys L 865 Thr Val Pro A Gly Asn Asn L	1855 Lys Val Thr Glu Asp 1870 Ala Val Gln Gly Phe 1885 Leu Gln Asp Thr Leu
Thr Ala Ser Thr Glu 1845 Glu Asn Ser Pro Thr 1860 Leu Ser Lys Thr Leu 1875 Phe Arg Ser Ile Ser 1890 Arg Val Leu Thr Leu	Pro Ser Pro 1 Leu Met Tyr 1880 Leu Ser Arg (1895	Ser Glu Ser G 1850 Leu Gln Lys L 865 Thr Val Pro A Gly Asn Asn L 19	1855 Lys Val Thr Glu Asp 1870 Ala Val Gln Gly Phe 1885 Leu Gln Asp Thr Leu 2000 Crp Pro Asp Val Asn
Thr Ala Ser Thr Glu 1845 Glu Asn Ser Pro Thr 1860 Leu Ser Lys Thr Leu 1875 Phe Arg Ser Ile Ser 1890	Pro Ser Pro 1 Leu Met Tyr 1880 Leu Ser Arg (Ser Glu Ser G 1850 Leu Gln Lys L 865 Thr Val Pro A Gly Asn Asn L	1855 Lys Val Thr Glu Asp 1870 Ala Val Gln Gly Phe 1885 Leu Gln Asp Thr Leu
Thr Ala Ser Thr Glu 1845 Glu Asn Ser Pro Thr 1860 Leu Ser Lys Thr Leu 1875 Phe Arg Ser Ile Ser 1890 Arg Val Leu Thr Leu	Pro Ser Pro 1 Leu Met Tyr 1880 Leu Ser Arg (1895	Ser Glu Ser G 1850 Leu Gln Lys L 865 Thr Val Pro A Gly Asn Asn L 19	1855 Lys Val Thr Glu Asp 1870 Ala Val Gln Gly Phe 1885 Leu Gln Asp Thr Leu 2000 Crp Pro Asp Val Asn
Thr Ala Ser Thr Glu 1845 Glu Asn Ser Pro Thr 1860 Leu Ser Lys Thr Leu 1875 Phe Arg Ser Ile Ser 1890 Arg Val Leu Thr Leu	Pro Ser Pro la Leu Met Tyr 1880 Leu Ser Arg (1895 Trp Phe Asp (1910)	Ser Glu Ser G 1850 Leu Gln Lys L 865 Thr Val Pro A Gly Asn Asn L 19 Tyr Gly His T 1915	1855 Lys Val Thr Glu Asp 1870 Ala Val Gln Gly Phe 1885 Leu Gln Asp Thr Leu 2000 Crp Pro Asp Val Asn 1920
Thr Ala Ser Thr Glu 1845 Glu Asn Ser Pro Thr 1860 Leu Ser Lys Thr Leu 1875 Phe Arg Ser Ile Ser 1890 Arg Val Leu Thr Leu 1905	Pro Ser Pro 1 Leu Met Tyr 1880 Leu Ser Arg (1895 Trp Phe Asp 1910	Ser Glu Ser G 1850 Leu Gln Lys L 865 Thr Val Pro A Gly Asn Asn L 19 Tyr Gly His T 1915	1855 Lys Val Thr Glu Asp 1870 Ala Val Gln Gly Phe 1885 Leu Gln Asp Thr Leu 2000 Crp Pro Asp Val Asn 1920
Thr Ala Ser Thr Glu 1845 Glu Asn Ser Pro Thr 1860 Leu Ser Lys Thr Leu 1875 Phe Arg Ser Ile Ser 1890 Arg Val Leu Thr Leu 1905 Glu Ala Leu Val Glu	Pro Ser Pro 1 Leu Met Tyr 1880 Leu Ser Arg (1895 Trp Phe Asp (1910	Ser Glu Ser G 1850 Leu Gln Lys L 865 Thr Val Pro A Gly Asn Asn L 19 Tyr Gly His T 1915 Ala Ile Gln I	1855 Lys Val Thr Glu Asp 1870 Ala Val Gln Gly Phe 1885 Leu Gln Asp Thr Leu 2000 Trp Pro Asp Val Asn 1920 Tle Asp Thr Trp Leu 1935

Val Gly Arg Leu Ile His Gln Leu Leu Thr Asp Ile Gly Arg Tyr His

Pro Gln Ala Leu Ile Tyr Pro Leu Thr Val Ala Ser Lys Ser Thr Thr Thr Ala Arg His Asn Ala Ala Asn Lys Ile Leu Lys Asn Met Cys Glu His Ser Asn Thr Leu Val Gln Gln Ala Met Met Val Ser Glu Glu Leu Ile Arg Val Ala Ile Leu Trp His Glu Met Trp His Glu Gly Leu Glu Glu Ala Ser Arg Leu Tyr Phe Gly Glu Arg Asn Val Lys Gly Met Phe Glu Val Leu Glu Pro Leu His Ala Met Met Glu Arg Gly Pro Gln Thr Leu Lys Glu Thr Ser Phe Asn Gln Ala Tyr Gly Arg Asp Leu Met Glu Ala Gln Glu Trp Cys Arg Lys Tyr Met Lys Ser Gly Asn Val Lys Asp Leu Thr Gln Ala Trp Asp Leu Tyr Tyr His Val Phe Arg Arg Ile Ser Lys Gln Leu Pro Gln Leu Thr Ser Leu Glu Leu Gln Tyr Val Ser Pro Lys Leu Leu Met Cys Arg Asp Leu Glu Leu Ala Val Pro Gly Thr Tyr Asp Pro Asn Gln Pro Ile Ile Arg Ile Gln Ser Ile Ala Pro Ser Leu Gln Val Ile Thr Ser Lys Gln Arg Pro Arg Lys Leu Thr Leu Met Gly Ser Asn Gly His Glu Phe Val Phe Leu Leu Lys Gly His Glu Asp Leu Arg Gln Asp Glu Arg Val Met Gln Leu Phe Gly Leu Val Asn Thr Leu

Leu Ala	Asn	Asp	Pro	Thr	Ser	Leu	Arg	Lys	Asn	Leu	Ser	Ile	Gln	Arg
2210				2	2215				4	2220				
Tyr Ala	Val	Ile	Pro	Leu	Ser	Thr	Asn	Ser	Gly	Leu	Ile	Gly	Trp	Val
2225			4	2230				2	2235				4	2240
Pro His	Cys	Asp	Thr	Leu	His	Ala	Leu	Ile	Arg	Asp	Tyr	Arg	Glu	Lys
		2	2245				2	2250				4	2255	
Lys Lys	Ile	Leu	Leu	Asn	Ile	Glu	His	Arg	Ile	Met	Leu	Arg	Met	Ala
	4	2260				2	2265				4	2270		
Pro Asp	Tyr	Asp	His	Leu	Thr	Leu	Met	Gln	Lys	Val	Glu	Val	Phe	Glu
6	2275				2	2280				2	2285			
His Ala		Asn	Asn	Thr			Asp	Asp	Leu			Leu	Leu	Trp
2290					2295	J	•	•		2300	,			1
Leu Lys	Ser	Pro	Ser			Val	Trn	Phe			Arg	Thr	Asn	Tvr
2305				2310					2315	8	8			2320
Thr Arg	Ser	Leu			Met	Ser	Met			Tvr	He	Leu		
8			2325					2330	3	-3-			2335	
Gly Asp	Arg			Ser	Asn	Leu			Asp	Arg	Len			Lvs
ary map		2340		501			2345	Dou	пор	0		2350	arj	2,0
	•	2010				•	2010				•	2000		
				ъ.				ъ.						
Ile Leu		He	Asp	Phe			Cys	Phe	Glu			Met	Thr	Arg
	2355					2360					2365			
Glu Lys	Phe	Pro	Glu			Pro	Phe	Arg			Arg	Met	Leu	Thr
2370					2375					2380				
Asn Ala	Met	Glu			Gly	Leu	Asp			Tyr	Arg	Ile		
2385			4	2390				2	2395				2	2400
His Thr	Val			Val	Leu	Arg			Lys	Asp	Ser	Val	Met	Ala
		2	2405				2	2410				2	2415	
Val Leu	Glu	Ala	Phe	Val	Tyr	Asp	Pro	Leu	Leu	Asn	Trp	Arg	Leu	Met
	4	2420				2	2425				4	2430		
Asp Thr	Asn	Thr	Lys	Gly	Asn	Lys	Arg	Ser	Arg	Thr	Arg	Thr	Asp	Ser
62	2435				2	2440				2	2445			
Trrn Con	ΔΙα	Glv	Gln	Ser	Val	Glu	Ile	Leu	Asp	Gly	Val	Glu	Leu	Gly

2450

2455

Glu Pro Ala His Lys Lys Thr Gly Thr Thr Val Pro Glu Ser Ile His 2465 2470 2475 2480 Ser Phe Ile Gly Asp Gly Leu Val Lys Pro Glu Ala Leu Asn Lys Lys 2485 2490 2495

Ala Ile Gln Ile Ile Asn Arg Val Arg Asp Lys Leu Thr Gly Arg Asp
2500 2505 2510

Phe Ser His Asp Asp Thr Leu Asp Val Pro Thr Gln Val Glu Leu Leu 2515 2520 2525

Ile Lys Gln Ala Thr Ser His Glu Asn Leu Cys Gln Cys Tyr Ile Gly
2530 2535 2540

Trp Cys Pro Phe Trp

2545

<210> 3

<211> 3495

<212> DNA

<213> Homo sapiens

<220><221> gene

<222> (1)..(3495)

<223> wild type TSC1

<400> 3

aagatggaca ctgacgtcgt tgtcctcaca acaggcgtct tggtgttgat aaccatgcta 420
ccaatgattc cacagtctgg gaaacagcat cttcttgatt tctttgacat ttttggccgt 480
ctgtcatcat ggtgcctgaa gaaaccaggc cacgtggcgg aagtctatct cgtccatctc 540
catgccagtg tgtacgcact ctttcatcgc ctttatggaa tgtacccttg caacttcgtc 600
tcctttttgc gttctcatta cagtatgaaa gaaaacctgg agacttttga agaagtggtc 660
aagccaatga tggagcatgt gcgaattcat ccggaattag tgactggatc caaggaccat 720

gaactggacc	ctcgaaggtg	gaagagatta	gaaactcatg	atgttgtgat	cgagtgtgcc	780
appar at at a	tagatagaa	agaagaataa	t at gaagat g	gatattatgt	gtatagaaaa	840
	tggatcccac					900
	gctttcctca					960
	atgggtgtgc					
	ggcagctacc					1020
	ctactctttg					1080
	atgtcccacc					1140
gcaggtggaa	aaggaactcc	tctgggaacc	ccagcaacct	ctcctcctcc	agccccactc	1200
tgtcattcgg	atgactacgt	gcacatttca	ctccccagg	ccacagtcac	acccccagg	1260
aaggaagaga	gaatggattc	tgcaagacca	tgtctacaca	gacaacacca	tcttctgaat	1320
gacagaggat	cagaagagcc	acctggcagc	aaaggttctg	tcactctaag	tgatcttcca	1380
gggttttag	gtgatctggc	ctctgaagaa	gatagtattg	aaaaagataa	agaagaagct	1440
gcaatatcta	gagaactttc	tgagatcacc	acagcagagg	cagagcctgt	ggttcctcga	1500
ggaggctttg	actctccctt	ttaccgagac	agtctcccag	gttctcagcg	gaagacccac	1560
tcggcagcct	ccagttctca	gggcgccagc	gtgaaccctg	agcctttaca	ctcctccctg	1620
gacaagcttg	ggcctgacac	accaaagcaa	gcctttactc	ccatagacct	gccctgcggc	1680
agtgctgatg	aaagccctgc	gggagacagg	gaatgccaga	cttctttgga	gaccagtatc	1740
ttcactccca	gtccttgtaa	aattccacct	ccgacgagag	tgggctttgg	aagcgggcag	1800
	atgatcatct					1860
	ctgaggagct					1920
	ccccaatgga					1980
	tgaacaagtt					2040
ugouuggugo	tgaacaagtt	Socretucco	ugouugioig	1084018840	codotttggd	2010
ggctctcctc	cttcagatga	gatccgcacc	ctccgagacc	agttgctttt	actgcacaac	2100
cagttactct	atgagcgttt	taagaggcag	cagcatgccc	tccggaacag	gcggctcctc	2160
cgcaaggtga	tcaaagcagc	agctctggag	gaacataatg	ctgccatgaa	agatcagttg	2220
aagttacaag	agaaggacat	ccagatgtgg	aaggttagtc	tgcagaaaga	acaagctaga	2280
tacaatcagc	tccaggagca	gcgtgacact	atggtaacca	agctccacag	ccagatcaga	2340
cagctgcagc	atgaccgaga	ggaattctac	aaccagagcc	aggaattaca	gacgaagctg	2400
gaggactgca	ggaacatgat	tgcggagctg	cggatagaac	tgaagaaggc	caacaacaag	2460

gtgtgtcaca ctgagctgct gctcagtcag gtttcccaaa agctctcaaa cagtgagtcg 2520 2580 gtccagcagc agatggagtt cttgaacagg cagctgttgg ttcttgggga ggtcaacgag 2640 ctctatttgg aacaactgca gaacaagcac tcagatacca caaaggaagt agaaatgatg 2700 aaagccgcct atcggaaaga gctagaaaaa aacagaagcc atgttctcca gcagactcag 2760 aggettgata ceteccaaaa aeggattttg gaactggaat eteacetgge caagaaagae caccttcttt tggaacagaa gaaatatcta gaggatgtca aactccaggc aagaggacag 2820 2880 ctgcaggccg cagagagcag gtatgaggct cagaaaagga taacccaggt gtttgaattg 2940 gagatettag atttatatgg caggttggag aaagatggee teetgaaaaa aettgaagaa 3000 gaaaaagcag aagcagctga agcagcagaa gaaaggcttg actgttgtaa tgacgggtgc 3060 tcagattcca tggtagggca caatgaagag gcatctggcc acaacggtga gaccaagacc 3120 cccaggccca gcagcgccg gggcagtagt ggaagcagag gtggtggagg cagcagcagc agcagcagcg agctttctac cccagagaaa cccccacacc agagggcagg cccattcagc 3180 3240 agtcggtggg agacgactat gggagaagcg tctgccagca tccccaccac tgtgggctca 3300 cttcccagtt caaaaagctt cctgggtatg aaggctcgag agttatttcg taataagagc 3360 gagagccagt gtgatgagga cggcatgacc agtagccttt ctgagagcct aaagacagaa ctgggcaaag acttgggtgt ggaagccaag attcccctga acctagatgg ccctcacccg 3420 tctcccccga ccccggacag tgttggacag ctacatatca tggactacaa tgagactcat 3480 catgaacaca gctaa 3495 <210> 4 <211> 1164 <212> PRT <213> Homo sapiens <220><221> PEPTIDE <222> (1)...(1164)<223> wild type TSC1 <400> Met Ala Gln Gln Ala Asn Val Gly Glu Leu Leu Ala Met Leu Asp Ser 1 5 10 15

1 Solution 1. The least segment of the least segment segment of the least segment segment

Tyr	Leu	Glu	Thr	Ser	Ser	Gln	Pro	Ala	Leu	His	Ile	Leu	Thr	Thr	Leu
	50					55					60				
Gln	Glu	Pro	His	Asp	Lys	His	Leu	Leu	Asp	Arg	Ile	Asn	Glu	Tyr	Val
65					70					75					80
Gly	Lys	Ala	Ala	Thr	Arg	Leu	Ser	Ile	Leu	Ser	Leu	Leu	Gly	His	Val
				85					90					95	
Ile	Arg	Leu	Gln	Pro	Ser	Trp	Lys	His	Lys	Leu	Ser	Gln	Ala	Pro	Leu
			100					105					110		
Leu	Pro	Ser	Leu	Leu	Lys	Cys	Leu	Lys	Met	Asp	Thr	Asp	Val	Val	Val
		115					120					125			
Leu	Thr	Thr	Gly	Val	Leu	Val	Leu	Ile	Thr	Met	Leu	Pro	Met	Ile	Pro
	130					135					140				
Gln	Ser	Gly	Lys	Gln	His	Leu	Leu	Asp	Phe	Phe	Asp	Ile	Phe	Gly	Arg
145					150					155					160
Leu	Ser	Ser	Trp	Cys	Leu	Lys	Lys	Pro	Gly	His	Val	Ala	Glu	Val	Tyr
				165					170					175	
Leu	Val	His	Leu	His	Ala	Ser	Val	Tyr	Ala	Leu	Phe	His	Arg	Leu	Tyr
			180					185					190		
Gly	Met	Tyr	Pro	Cys	Asn	Phe	Val	Ser	Phe	Leu	Arg	Ser	His	Tyr	Ser
Met		195					200					205			
	Lys		Asn	Leu	Glu	Thr		Glu	Glu	Val	Val		Pro	Met	Met
	Lys 210		Asn	Leu	Glu	Thr 215		Glu	Glu	Val	Val 220		Pro	Met	Met
			Asn	Leu	Glu			Glu	Glu	Val			Pro	Met	Met
	210	Glu		Leu		215	Phe				220	Lys			
	210	Glu				215	Phe				220	Lys			
Glu 225	210 His	Glu Val	Arg		His 230	215 Pro	Phe	Leu	Val	Thr 235	220 Gly	Lys	Lys	Asp	His 240
Glu 225	210 His	Glu Val	Arg	Ile	His 230	215 Pro	Phe	Leu	Val	Thr 235	220 Gly	Lys	Lys	Asp	His 240
Glu 225 Glu	210 His Leu	Glu Val Asp	Arg Pro	Ile Arg	His 230 Arg	215 Pro Trp	Phe Glu Lys	Leu Arg	Val Leu 250	Thr 235 Glu	220 Gly Thr	Lys Ser His	Lys Asp	Asp Val 255	His 240 Val
Glu 225 Glu	210 His Leu	Glu Val Asp	Arg Pro	Ile Arg 245	His 230 Arg	215 Pro Trp	Phe Glu Lys	Leu Arg	Val Leu 250	Thr 235 Glu	220 Gly Thr	Lys Ser His	Lys Asp	Asp Val 255	His 240 Val
Glu 225 Glu Ile	210 His Leu Glu	Glu Val Asp	Arg Pro Ala 260	Ile Arg 245	His 230 Arg	215 Pro Trp	Phe Glu Lys Leu	Leu Arg Asp 265	Val Leu 250 Pro	Thr 235 Glu Thr	220 Gly Thr	Lys Ser His	Lys Asp Ser 270	Asp Val 255 Tyr	His 240 Val
Glu 225 Glu Ile	210 His Leu Glu	Glu Val Asp	Arg Pro Ala 260	Ile Arg 245 Lys	His 230 Arg	215 Pro Trp	Phe Glu Lys Leu	Leu Arg Asp 265	Val Leu 250 Pro	Thr 235 Glu Thr	220 Gly Thr	Lys Ser His	Lys Asp Ser 270	Asp Val 255 Tyr	His 240 Val

290		295			300			
Gly Cys Ala	Thr Ser	Thr Pro	Tyr Ser	Thr Sei	Arg	Leu Me	t Leu	Leu
305		310		318	5			320
Asn Met Pro	Gly Gln	Leu Pro	Gln Thr	Leu Sei	Ser	Pro Se	r Thr	Arg
	325			330			335	
Leu Ile Thr	Glu Pro	Pro Gln	Ala Thr	Leu Tr	Ser	Pro Se	r Met	Val
	340		345			350)	
Cys Gly Met	Thr Thr	Pro Pro	Thr Ser	Pro Gly	/ Asn	Val Pro	o Pro	Asp
355)		360			365		
Leu Ser His	Pro Tyr	Ser Lys	Val Phe	Gly Thi	Thr	Ala Gl	y Gly	Lys
370		375			380			
Gly Thr Pro	Leu Gly	Thr Pro	Ala Thr	Ser Pro) Pro	Pro Ala	a Pro	Leu
385		390		395	5			400
Cys His Ser	Asp Asp	Tyr Val	His Ile	Ser Lei	ı Pro	Gln Ala	a Thr	Val
	405			410			415	
Thr Pro Pro	Arg Lys	Glu Glu	Arg Met	Asp Sei	· Ala	Arg Pro	o Cys	Leu
	420		425			430)	
His Arg Glr	His His	Leu Leu	Asn Asp	Arg Gly	Ser	Glu Glı	ı Pro	Pro
435			440			445		
Gly Ser Lys	Gly Ser	Val Thr	Leu Ser	Asp Lei	ı Pro	Gly Pho	e Leu	Gly
450		455			460			
Asp Leu Ala	Ser Glu	Glu Asp	Ser Ile	Glu Lys	s Asp	Lys Gl	ı Glu	Ala
465		470		475	5			480
Ala Ile Ser	Arg Glu	Leu Ser	Glu Ile	Thr Thi	· Ala	Glu Ala	a Glu	Pro
	485			490			495	
Val Val Pro	Arg Gly	Gly Phe	Asp Ser	Pro Phe	e Tyr	Arg Asj	Ser	Leu
	500		505			510)	
Pro Gly Ser	Gln Arg	Lys Thr	His Ser	Ala Ala	a Ser	Ser Sei	r Gln	Gly
515		v	520			525		•
Ala Ser Val		Glu Pro	Leu His	Ser Sei	Leu	Asp Ly	s Leu	Gly
530		535			540	·		-
Pro Asp Thr	· Pro Lys	Gln Ala	Phe Thr	Pro Ile	e Asp	Leu Pro	o Cys	Gly

545					550					555					560
Ser	Ala	Asp	Glu	Ser	Pro	Ala	Gly	Asp	Arg	Glu	Cys	Gln	Thr	Ser	Leu
				565					570					575	
Glu	Thr	Ser	Ile	Phe	Thr	Pro	Ser	Pro	Cys	Lys	Ile	Pro	Pro	Pro	Thr
			580					585					590		
Arg	Val	Gly	Phe	Gly	Ser	Gly	Gln	Pro	Pro	Pro	Tyr	Asp	His	Leu	Phe
		595					600					605			
Glu	Val	Ala	Leu	Pro	Lys	Thr	Ala	His	His	Phe	Val	Ile	Arg	Lys	Thr
	610					615					620				
Glu	Glu	Leu	Leu	Lys	Lys	Ala	Lys	Gly	Asn	Thr	Glu	Glu	Asp	Gly	Val
625					630					635					640
Pro	Ser	Thr	Ser	Pro	Met	Glu	Val	Leu	Asp	Arg	Leu	Ile	Gln	Gln	Gly
				645					650					655	
Ala	Asp	Ala	His	Ser	Lys	Glu	Leu	Asn	Lys	Leu	Pro	Leu	Pro	Ser	Lys
			660					665					670		
Ser	Val	Asp	Trp	Thr	His	Phe	Gly	Gly	Ser	Pro	Pro	Ser	Asp	Glu	Ile
		675					680					685			
Arg	Thr	Leu	Arg	Asp	Gln	Leu	Leu	Leu	Leu	His	Asn	Gln	Leu	Leu	Tyr
	690					695					700				
Glu	Arg	Phe	Lys	Arg	Gln	Gln	His	Ala	Leu	Arg	Asn	Arg	Arg	Leu	Leu
705					710					715					720
Arg	Lys	Val	Ile	Lys	Ala	Ala	Ala	Leu	Glu	Glu	His	Asn	Ala	Ala	Met
				725					730					735	
Lys	Asp	Gln	Leu	Lys	Leu	Gln	Glu	Lys	Asp	Ile	Gln	Met	Trp	Lys	Val
			740					745					750		
Ser	Leu	Gln	Lys	Glu	Gln	Ala	Arg	Tyr	Asn	Gln	Leu	Gln	Glu	Gln	Arg
		755					760					765			
Asp	Thr		Val	Thr	Lys	Leu	His	Ser	Gln	Ile	Arg		Leu	Gln	His
	770					775					780				
Asp	Arg	Glu	Glu	Phe	Tyr	Asn	Gln	Ser	Gln	Glu	Leu	Gln	Thr	Lys	Leu
785					790					795					800

Glu	Asp	Cys	Arg	Asn	Met	He	Ala	Glu	Leu	Arg	He	Glu	Leu	Lys	Lys
				805					810					815	
Ala	Asn	Asn	Lys	Val	Cys	His	Thr	Glu	Leu	Leu	Leu	Ser	Gln	Val	Ser
			820					825					830		
Gln	Lys	Leu	Ser	Asn	Ser	Glu	Ser	Val	Gln	Gln	Gln	Met	Glu	Phe	Leu
		835					840					845			
Asn	Arg	Gln	Leu	Leu	Val	Leu	Gly	Glu	Val	Asn	Glu	Leu	Tyr	Leu	Glu
	850					855					860				
Gln	Leu	Gln	Asn	Lys	His	Ser	Asp	Thr	Thr	Lys	Glu	Val	Glu	Met	Met
OGE					970					875					000
865	A 1 -	Λ1.	Т	Λ	870	C1	Ι	C1	I		Λ	C	п: -	W - 1	880
Lys	ATA	Ala	lyr		Lys	GIU	Leu	GIU		ASI	Arg	ser	ПIS		Leu
61	0.1	m,	0.1	885			m.	0	890					895	
Gln	Gln	Thr		Arg	Leu	Asp	Thr		Gln	Lys	Arg	He		Glu	Leu
			900					905					910		
Glu	Ser	His	Leu	Ala	Lys	Lys		His	Leu	Leu	Leu		Gln	Lys	Lys
		915					920					925			
Tyr		Glu	Asp	Val	Lys		Gln	Ala	Arg	Gly	Gln	Leu	Gln	Ala	Ala
	930					935					940				
Glu	Ser	Arg	Tyr	Glu	Ala	Gln	Lys	Arg	Ile	Thr	Gln	Val	Phe	Glu	Leu
945					950					955					960
Glu	Ile	Leu	Asp	Leu	Tyr	Gly	Arg	Leu	Glu	Lys	Asp	Gly	Leu	Leu	Lys
				965					970					975	
Lys	Leu	Glu	Glu	Glu	Lys	Ala	Glu	Ala	Ala	Glu	Ala	Ala	Glu	Glu	Arg
			980					985					990		
Leu	Asp	Cys	Cys	Asn	Asp	Gly	Cys	Ser	Asp	Ser	Met	Val	Gly	His	Asn
		995					1000					1005			
Glu	Glu	Ala	Ser	Gly	His	Asn	Gly	Glu	Thr	Lys	Thr	Pro	Arg	Pro	Ser
1	1010				-	1015				-	1020				
		Arg	Glv	Ser			Ser	Aro	Glv			Glv	Ser	Ser	Ser
1025		111 g	uly		1030	uly	OCI	111 g		1035	ury	uly	OCI		1040
		Ç	C1			Th	D	C1			D⊷∽	ш: ~	C1		
ser	ser,	Ser	ulu	Leu	ser	1111′	LLO	ulu	LyS	LLO	LLO	піѕ	GIII	Ar g	AIA

1055

Gly Pro Phe Ser Ser Arg Trp Glu Thr Thr Met Gly Glu Ala Ser Ala

1060
1065
1070

Ser Ile Pro Thr Thr Val Gly Ser Leu Pro Ser Ser Lys Ser Phe Leu
1075
1080
1085

Gly Met Lys Ala Arg Glu Leu Phe Arg Asn Lys Ser Glu Ser Gln Cys
1090 1095 1100

Asp Glu Asp Gly Met Thr Ser Ser Leu Ser Glu Ser Leu Lys Thr Glu
1105 1110 1115 1120

Leu Gly Lys Asp Leu Gly Val Glu Ala Lys Ile Pro Leu Asn Leu Asp
1125 1130 1135

Gly Pro His Pro Ser Pro Pro Thr Pro Asp Ser Val Gly Gln Leu His
1140 1145 1150

Ile Met Asp Tyr Asn Glu Thr His His Glu His Ser

1155 1160

<210> 5

<211> 5424

<212> DNA

<213> Homo sapiens

<220><221> gene

<222> (1)..(5424)

<223> wild type TSC2

<400> 5

atggccaaac caacaagcaa agattcaggc ttgaaggaga agtttaagat tctgttggga 60
ctgggaacac cgaggccaaa tcccaggtct gcagagggta aacagacgga gtttatcatc 120
accgcggaaa tactgagaga actgagcatg gaatgtggcc tcaacaatcg catccggatg 180
atagggcaga tttgtgaagt cgcaaaaacc aagaaatttg aagagcacgc agtggaagca 240

ctctggaagg cggtcgcgga tctgttgcag ccggagcggc cgctggaggc ccggcacgcg 300
gtgctggctc tgctgaaggc catcgtgcag gggcagggcg agcgtttggg ggtcctcaga 360
gccctcttct ttaaggtcat caaggattac ccttccaacg aagaccttca cgaaaggctg 420
gaggttttca aggccctcac agacaatggg agacacatca cctacttgga ggaagagctg 480
gctgactttg tcctgcagtg gatggatgtt ggcttgtcct cggaattcct tctggtgctg 540
gtgaacttgg tcaaattcaa tagctgttac ctcgacgagt acatcgcaag gatggttcag 600

atgatctgtc	tgctgtgcgt	ccggaccgcg	tcctctgtgg	acatagaggt	ctccctgcag	660
gtgctggacg	ccgtggtctg	ctacaactgc	ctgccggctg	agagcctccc	gctgttcatc	720
gttaccctct	gtcgcaccat	caacgtcaag	gagctctgcg	agccttgctg	gaagctgatg	780
cggaacctcc	ttggcaccca	cctgggccac	agcgccatct	acaacatgtg	ccacctcatg	840
gaggacagag	cctacatgga	ggacgcgccc	ctgctgagag	gagccgtgtt	ttttgtgggc	900
atggctctct	ggggagccca	ccggctctat	tctctcagga	actcgccgac	atctgtgttg	960
ccatcatttt	accaggccat	ggcatgtccg	aacgaggtgg	tgtcctatga	gatcgtcctg	1020
tccatcacca	ggctcatcaa	gaagtatagg	aaggagctcc	aggtggtggc	gtgggacatt	1080
ctgctgaaca	tcatcgaacg	gctccttcag	cagctccaga	ccttggacag	cccggagctc	1140
aggaccatcg	tccatgacct	gttgaccacg	gtggaggagc	tgtgtgacca	gaacgagttc	1200
cacgggtctc	aggagagata	ctttgaactg	gtggagagat	gtgcggacca	gaggcctgag	1260
tcctcctcc	tgaacctgat	ctcctataga	gcgcagtcca	tccacccggc	caaggacggc	1320
tggattcaga	acctgcaggc	gctgatggag	agattcttca	ggagcgagtc	ccgaggcgcc	1380
gtgcgcatca	aggtgctgga	cgtgctgtcc	tttgtgctgc	tcatcaacag	gcagttctat	1440
gaggaggagc	tgattaactc	agtggtcatc	tcgcagctct	cccacatccc	cgaggat aaa	1500
gaccaccagg	tccgaaagct	ggccacccag	ttgctggtgg	acctggcaga	gggctgccac	1560
acacaccact	tcaacagcct	gctggacatc	atcgagaagg	tgatggcccg	ctccctctcc	1620
ccacccccgg	agctggaaga	aagggatgtg	gccgcatact	cggcctcctt	ggaggatgtg	1680
aagacagccg	tcctggggct	tctggtcatc	cttcagacca	agctgtacac	cctgcctgca	1740
agccacgcca	cgcgtgtgta	tgagatgctg	gtcagccaca	ttcagctcca	ctacaagcac	1800
agctacaccc	tgccaatcgc	gagcagcatc	cggctgcagg	cctttgactt	cctgttgctg	1860
	actcactgca					1920
agcccctact	gcgtctgcga	ctacatggag	ccagagagag	gctctgagaa	gaagaccagc	1980
	ctcctcccac					2040
	tgccctactc					2100
	aggtgctgaa					2160
	ttacttcccc					2220
	caaagacact					2280
gacttgcacc	tggccgtggt	tccagtgctg	acagcattaa	tctcttacca	taactacctg	2340

gacaaaacca aacagcgcga	gatggtctac	tgcctggagc	agggcctcat	ccaccgctgt	2400
gccagccagt gcgtcgtggc	cttgtccatc	tgcagcgtgg	agatgcctga	catcatcatc	2460
aaggcgctgc ctgttctggt	ggtgaagctc	acgcacatct	cagccacagc	cagcatggcc	2520
gtcccactgc tggagttcct	gtccactctg	gccaggctgc	cgcacctcta	caggaacttt	2580
gccgcggagc agtatgccag	tgtgttcgcc	atctccctgc	cgtacaccaa	cccctccaag	2640
tttaatcagt acatcgtgtg	tctggcccat	cacgtcatag	ccatgtggtt	catcaggtgc	2700
cgcctgccct tccggaagga	ttttgtccct	ttcatcacta	agggcctgcg	gtccaatgtc	2760
ctcttgtctt ttgatgacac	ccccgagaag	gacagcttca	gggcccggag	tactagtctc	2820
aacgagagac ccaagagtct	gaggatagcc	agacccccca	aacaaggctt	gaataactct	2880
ccacccgtga aagaattcaa	ggagagctct	gcagccgagg	ccttccggtg	ccgcagcatc	2940
agtgtgtctg aacatgtggt	ccgcagcagg	atacagacgt	ccctcaccag	tgccagcttg	3000
gggtctgcag atgagaactc	cgtggcccag	gctgacgata	gcctgaaaaa	cctccacctg	3060
gageteaegg aaacetgtet	ggacatgatg	gctcgatacg	tcttctccaa	cttcacggct	3120
gtcccgaaga ggtctcctgt	gggcgagttc	ctcctagcgg	gtggcaggac	caaaacctgg	3180
ctggttggga acaagcttgt	cactgtgacg	acaagcgtgg	gaaccgggac	ccggtcgtta	3240
ctaggcctgg actcggggga					3300
catgtgagac agaccaagga					3360
tcccgtgggg cccgggatcg					3420
gccctggacg tgccggcctc					3480
gcaccagccg cgaaacctga					3540
acgaacctgg cggcctatgt					3600
400440000000000000000000000000000000000	800000		000,00000	00000000	0000
					0.000
aggeceaeag ggaacaceag					3660
teggacatea acaacatgee					3720
ttcaaggagc accgggacac					3780
gccaaacccc ctcctctgcc					3840
tccagctgcc aaggacagct					3900
gaggagggaa gtccgggcga					3960
gaggcagcgc taggcatgga	caggcgcacg	gatgcctaca	gcaggtcgtc	ctcagtctcc	4020
agccaggagg agaagtcgct	ccacgcggag	gagctggttg	gcaggggcat	ccccatcgag	4080
cgagtcgtct cctcggaggg	tggccggccc	tctgtggacc	tctccttcca	gccctcgcag	4140
cccctgagca agtccagctc	ctctcccgag	ctgcagactc	tgcaggacat	cctcggggac	4200

cctggggaca aggccgacgt gggccggctg agccctgagg ttaaggcccg gtcacagtca	4260
gggaccctgg acggggaaag tgctgcctgg tcggcctcgg gcgaagacag tcggggccag	g 4320
cccgagggtc ccttgccttc cagctccccc cgctcgccca gtggcctccg gccccgaggt	4380
tacaccatct ccgactcggc cccatcacgc aggggcaaga gagtagagag ggacgcctta	4440
aagagcagag ccacagcete caatgcagag aaagtgccag gcatcaacce cagtttegtg	g 4500
ttcctgcage tctaccattc ccccttcttt ggcgacgagt caaacaagcc aatcctgctg	g 4560
cccaatgagt cacagteett tgageggteg gtgeagetee tegaceagat eccateatae	4620
gacacccaca agategeegt cetgtatgtt ggagaaggee agageaacag egagetegee	4680
atcctgtcca atgagcatgg ctcctacagg tacacggagt tcctgacggg cctgggccgg	g 4740
ctcatcgagc tgaaggactg ccagccggac aaggtgtacc tgggaggcct ggacgtgtgt	4800
ggtgaggacg gccagttcac ctactgctgg cacgatgaca tcatgcaagc cgtcttccac	4860
ategecacee tgatgeceae caaggaegtg gacaagcace getgegacaa gaagegeeae	4920
ctgggcaacg actitgtgtc cattgtctac aatgactccg gtgaggactt caagcttggc	
accatcaagg gecagtteaa etttgteeae gtgategtea eeeegetgga etaegagtge	5040
aacctggtgt ccctgcagtg caggaaagac atggagggcc ttgtggacac cagcgtggcc	5100
aagategtgt etgaeegeaa eetgeeette gtggeeegee agatggeeet geaegeaaat	5160
atggcctcac aggtgcatca tagccgctcc aaccccaccg atatctaccc ctccaagtgg	g 5220
attgcccggc tccgccacat caagcggctc cgccagcgga tctgcgagga agccgcctac	5280
tccaacccca gcctacctct ggtgcaccct ccgtcccata gcaaagcccc tgcacagact	5340
ccagccgage ccacacctgg ctatgaggtg ggccagcgga agegeeteat etecteggtg	
gaggacttca ccgagtttgt gtga	5424
<210> 6	
<211> 1807	
<212> PRT	
<213> Homo sapiens	
<220><221> PEPTIDE	
<222> (1)(1807)	
<223> wild type TSC2	
<400> 6	
Met Ala Lys Pro Thr Ser Lys Asp Ser Gly Leu Lys Glu Lys Phe Lys	

Ile	Leu	Leu	Gly	Leu	Gly	Thr	Pro	Arg	Pro	Asn	Pro	Arg	Ser	Ala	Glu
			20					25					30		
Gly	Lys	Gln	Thr	Glu	Phe	Ile	Ile	Thr	Ala	Glu	Ile	Leu	Arg	Glu	Leu
		35					40					45			
Ser	Met	Glu	Cys	Gly	Leu	Asn	Asn	Arg	Ile	Arg	Met	Ile	Gly	Gln	Ile
	50					55					60				
Cys	Glu	Val	Ala	Lys	Thr	Lys	Lys	Phe	Glu	Glu	His	Ala	Val	Glu	Ala
65					70					75					80
Leu	Trp	Lys	Ala	Val	Ala	Asp	Leu	Leu	Gln	Pro	Glu	Arg	Pro	Leu	Glu
				85					90					95	
Ala	Arg	His	Ala	Val	Leu	Ala	Leu	Leu	Lys	Ala	Ile	Val	Gln	Gly	Gln
			100					105					110		
Gly	Glu	Arg	Leu	Gly	Val	Leu	Arg	Ala	Leu	Phe	Phe	Lys	Val	Ile	Lys
		115					120					125			
Asp	Tyr	Pro	Ser	Asn	Glu	Asp	Leu	His	Glu	Arg	Leu	Glu	Val	Phe	Lys
	130					135					140				
Ala	Leu	Thr	Asp	Asn	Gly	Arg	His	Ile	Thr	Tyr	Leu	Glu	Glu	Glu	Leu
145					150					155					160
Ala	Asp	Phe	Val	Leu	Gln	Trp	Met	Asp	Val	Gly	Leu	Ser	Ser	Glu	Phe
				165					170					175	
Leu	Leu	Val	Leu	Val	Asn	Leu	Val	Lys	Phe	Asn	Ser	Cys	Tyr	Leu	Asp
			180					185					190		
Glu	Tyr	Ile	Ala	Arg	Met	Val	Gln	Met	Ile	Cys	Leu	Leu	Cys	Val	Arg
		195					200					205			
Thr	Ala	Ser	Ser	Val	Asp	Ile	Glu	Val	Ser	Leu	Gln	Val	Leu	Asp	Ala
	210					215					220				
Val	Val	Cys	Tyr	Asn	Cys	Leu	Pro	Ala	Glu	Ser	Leu	Pro	Leu	Phe	Ile
225					230					235					240
	Thr	Leu	Cys	Arg		Ile	Asn	Val	Lys		Leu	Cys	Glu	Pro	
				245					250					255	
Trp	Lys	Leu	Met	Arg	Asn	Leu	Leu	Gly		His	Leu	Gly	His		Ala
			260					265					270		

He	Tyr	Asn	Met	Cys	His	Leu	Met	Glu	Asp	Arg	Ala	Tyr	Met	Glu	Asp
		275					280					285			
Ala	Pro	Leu	Leu	Arg	Gly	Ala	Val	Phe	Phe	Val	Gly	Met	Ala	Leu	Trp
	290					295					300				
Gly	Ala	His	Arg	Leu	Tyr	Ser	Leu	Arg	Asn	Ser	Pro	Thr	Ser	Val	Leu
305					310					315					320
Pro	Ser	Phe	Tyr	Gln	Ala	Met	Ala	Cys	Pro	Asn	Glu	Val	Val	Ser	Tyr
				325					330					335	
Glu	Ile	Val	Leu	Ser	Ile	Thr	Arg	Leu	Ile	Lys	Lys	Tyr	Arg	Lys	Glu
			340					345					350		
Leu	Gln	Val	Val	Ala	Trp	Asp	Ile	Leu	Leu	Asn	Ile	Ile	Glu	Arg	Leu
		355					360					365			
Leu	Gln	Gln	Leu	Gln	Thr	Leu	Asp	Ser	Pro	Glu	Leu	Arg	Thr	Ile	Val
	370					375					380				
His	Asp	Leu	Leu	Thr	Thr	Val	Glu	Glu	Leu	Cys	Asp	Gln	Asn	Glu	Phe
382					000					395					
385					390					393					400
	Gly	Ser	Gln	Glu		Tyr	Phe	Glu	Leu		Glu	Arg	Cys	Ala	
	Gly	Ser	Gln	Glu 405		Tyr	Phe	Glu	Leu 410		Glu	Arg	Cys	Ala 415	
His				405	Arg				410	Val				415	
His				405	Arg				410	Val				415	Asp
His	Arg	Pro	Glu 420	405 Ser	Arg Ser	Leu	Leu	Asn 425	410 Leu	Val Ile	Ser	Tyr	Arg 430	415	Asp
His	Arg	Pro	Glu 420	405 Ser	Arg Ser	Leu	Leu	Asn 425	410 Leu	Val Ile	Ser	Tyr	Arg 430	415 Ala	Asp
His	Arg	Pro His	Glu 420	405 Ser	Arg Ser	Leu	Leu Gly	Asn 425	410 Leu	Val Ile	Ser	Tyr Leu	Arg 430	415 Ala	Asp
His Gln Ser	Arg Ile	Pro His 435	Glu 420 Pro	405 Ser Ala	Arg Ser Lys	Leu Asp	Leu Gly 440	Asn 425 Trp	410 Leu Ile	Val Ile Gln	Ser Asn	Tyr Leu 445	Arg 430 Gln	415 Ala	Asp Gln Leu
His Gln Ser	Arg Ile	Pro His 435	Glu 420 Pro	405 Ser Ala	Arg Ser Lys	Leu Asp	Leu Gly 440	Asn 425 Trp	410 Leu Ile	Val Ile Gln	Ser Asn	Tyr Leu 445	Arg 430 Gln	415 Ala Ala	Asp Gln Leu
His Gln Ser	Arg Ile Glu 450	Pro His 435	Glu 420 Pro	405 Ser Ala	Arg Ser Lys	Leu Asp Ser 455	Leu Gly 440 Glu	Asn 425 Trp Ser	410 Leu Ile Arg	Val Ile Gln	Ser Asn Ala	Tyr Leu 445 Val	Arg 430 Gln Arg	415 Ala Ala	Asp Gln Leu Lys
His Gln Ser	Arg Ile Glu 450	Pro His 435	Glu 420 Pro	405 Ser Ala	Arg Ser Lys	Leu Asp Ser 455	Leu Gly 440 Glu	Asn 425 Trp Ser	410 Leu Ile Arg	Val Ile Gln	Ser Asn Ala	Tyr Leu 445 Val	Arg 430 Gln Arg	415 Ala Ala	Asp Gln Leu Lys
His Gln Ser Met Val 465	Arg Ile Glu 450 Leu	Pro His 435 Arg	Glu 420 Pro	405 Ser Ala Phe	Arg Ser Lys Arg Ser 470	Leu Asp Ser 455 Phe	Leu Gly 440 Glu Val	Asn 425 Trp Ser Leu	410 Leu Ile Arg	Val Ile Gln Gly Ile 475	Ser Asn Ala 460 Asn	Tyr Leu 445 Val	Arg 430 Gln Arg	415 Ala Ala	Asp Gln Leu Lys Tyr 480
His Gln Ser Met Val 465	Arg Ile Glu 450 Leu	Pro His 435 Arg	Glu 420 Pro	405 Ser Ala Phe	Arg Ser Lys Arg Ser 470	Leu Asp Ser 455 Phe	Leu Gly 440 Glu Val	Asn 425 Trp Ser Leu	410 Leu Ile Arg	Val Ile Gln Gly Ile 475	Ser Asn Ala 460 Asn	Tyr Leu 445 Val	Arg 430 Gln Arg	415 Ala Ala Ile	Asp Gln Leu Lys Tyr 480
His Gln Ser Met Val 465 Glu	Arg Ile Glu 450 Leu	Pro His 435 Arg Glu	Glu 420 Pro Phe Val	405 Ser Ala Phe Leu Ile 485	Arg Ser Lys Arg Ser 470 Asn	Leu Asp Ser 455 Phe	Leu Gly 440 Glu Val	Asn 425 Trp Ser Leu Val	410 Leu Ile Arg Leu Ile 490	Val Ile Gln Gly Ile 475 Ser	Ser Asn Ala 460 Asn	Tyr Leu 445 Val Arg Leu	Arg 430 Gln Arg Gln	415 Ala Ala Ile Phe	Asp Gln Leu Lys Tyr 480 Ile

Val Asp Leu Ala Glu Gly Cys His Thr His His Phe Asn Ser Leu Leu

Ref 1			515					520					525			
Selection Sele	Asp	Ile	Ile	Glu	Lys	Val	Met	Ala	Arg	Ser	Leu	Ser	Pro	Pro	Pro	Glu
545		530					535					540				
The	Leu	Glu	Glu	Arg	Asp	Val	Ala	Ala	Tyr	Ser	Ala	Ser	Leu	Glu	Asp	Val
The Leu Pro Ala Ser His Ala Ala	545					550					555					560
The Leu Pro Ala Ser His Ala The Arg Val Tyr Glu Met Leu Val Ser 580	Lys	Thr	Ala	Val	Leu	Gly	Leu	Leu	Val	Ile	Leu	Gln	Thr	Lys	Leu	Tyr
Secondary Seco					565					570					575	
His IIe Gin Leu His Tyr Lys His Ser Tyr Thr Leu Pro IIe Ala Ser 595 600 605 Ser IIe Arg Leu Gin Ala Phe Asp Phe Leu Leu Leu Leu Arg Ala Asp 610 610 615 620 Ser Leu His Arg Leu Gly Leu Pro Asn Lys Asp Gly Val Val Arg Phe 625 630 635 640 Ser Pro Tyr Cys Val Cys Asp Tyr Met Glu Pro Glu Arg Gly Ser Glu 645 655 Lys Lys Thr Ser Gly Pro Leu Ser Pro Pro Thr Gly Pro Pro Gly Pro Ala Val Arg Che 655 Lys Lys Thr Ser Gly Pro Ala Val Arg Leu Gly Ser Val Pro Tyr Ser Leu 675 680 685 Leu Phe Arg Val Leu Leu Gln Cys Leu Lys Gln Glu Ser Asp Trp Lys 690 700 Val Leu Lys Leu Val Leu Gly Arg Leu Pro Glu Ser Leu Arg Tyr Lys 705 715 720 Val Leu Lys Leu Phe Thr Ser Pro Cys Ser Val Asp Gln Leu Cys Ser Ala 725 730 735	Thr	Leu	Pro	Ala	Ser	His	Ala	Thr	Arg	Val	Tyr	Glu	Met	Leu	Val	Ser
Ser Ser				580					585					590		
Ser Ser																
Ser 11e Arg Leu Gln Ala Phe Asp Phe Leu Leu Leu Arg Ala Asp Ser Leu His Arg Leu Gly Leu Pro Asp Lys Asp Gly Val Arg Phe 625 Tr Tyr Cys Val Cys Asp Tyr Met Glu Pro Glu Arg Cys Glu Ser Pro Tyr Cys Val Cys Asp Tyr Met Glu Pro Glu Arg Gly Ser Glu Ala Pro Arg Ar	His	Ile	Gln	Leu	His	Tyr	Lys	His	Ser	Tyr	Thr	Leu	Pro	Ile	Ala	Ser
Ser Leu His Arg Leu G15 Ser Ley Asp G20 Val Val Arg Phe 622 Ser His Arg Leu G10 Leu Pro Asp Lys Asp G10 Val Val Arg Phe Ser Pro Tyr Cys Val Cys Asp Tyr Met G1u Pro G1u Arg G1u Ser G1u Arg Arg G1u Arg A			595					600					605			
Ser Reu His Arg Leu Gly Leu Pro Asn Lys Asp Gly Val Val Arg Pro 640 625	Ser	Ile	Arg	Leu	Gln	Ala	Phe	Asp	Phe	Leu	Leu	Leu	Leu	Arg	Ala	Asp
630		610					615					620				
Ser Pro Tyr Cys Val Cys Asp Tyr Met Glu Pro Glu Arg Gly Ser Glu Lys Lys Thr Ser Gly Pro Leu Ser Pro Pro Pro Thr Gly Pro Gly P	Ser	Leu	His	Arg	Leu	Gly	Leu	Pro	Asn	Lys	Asp	Gly	Val	Val	Arg	Phe
1	625					630					635					640
Lys Lys Thr Ser Gly Pro Leu Ser Pro Pro Thr Gly Pro Pro Gly Pro Leu Gly Pro Leu Gly Pro Gly Pro Leu Gly Pro Cys Ser Pro Gly Pro Cys Pro C	Ser	Pro	Tyr	Cys	Val	Cys	Asp	Tyr	Met	Glu	Pro	Glu	Arg	Gly	Ser	Glu
660					645					650					655	
Ala Pro Ala Gly Pro Ala Val Arg Leu Gly Ser Val Pro Tyr Ser Leu 675	Lys	Lys	Thr	Ser	Gly	Pro	Leu	Ser	Pro	Pro	Thr	Gly	Pro	Pro	Gly	Pro
Ala Pro Ala Gly Pro Ala Val Arg Leu Gly Ser Val Pro Tyr Ser Leu 675																
Fig. 10 Fig.				660					665					670		
Leu Phe Arg Val Leu Leu Gln Cys Leu Lys Gln Glu Ser Asp Trp Lys 690 695 700 Val Leu Lys Leu Val Leu Gly Arg Leu Pro Glu Ser Leu Arg Tyr Lys 705 715 720 Val Leu Ile Phe Thr Ser Pro Cys Ser Val Asp Gln Leu Cys Ser Ala 725 730 730 730 730 735 735 736 737 738 739 730 735 735 736 737 738 739 730 735 735 735	Ala	Pro	Ala	Gly	Pro	Ala	Val	Arg	Leu	Gly	Ser	Val	Pro	Tyr	Ser	Leu
690			675					680					685			
Val Leu Lys Leu Val Leu Gly Arg Leu Pro Glu Ser Leu Arg Tyr Lys 705 710 715 720 Val Leu Ile Phe Thr Ser Pro Cys Ser Val Asp Gln Leu Cys Ser Ala 725 730 730 735 Leu Cys Ser Met Leu Ser Gly Pro Lys Thr Leu Glu Arg Leu Arg Gly	Leu	Phe	Arg	Val	Leu	Leu	Gln	Cys	Leu	Lys	Gln	Glu	Ser	Asp	Trp	Lys
705		690					695					700				
Val Leu IIe Phe Thr Ser Pro Cys Ser Val Asp Gln Leu Cys Ser Ala 725 730 730 Leu Cys Ser Met Leu Ser Gly Pro Lys Thr Leu Glu Arg Leu Arg Gly	Val	Leu	Lys	Leu	Val	Leu	Gly	Arg	Leu	Pro	Glu	Ser	Leu	Arg	Tyr	Lys
Leu Cys Ser Met Leu Ser Gly Pro Lys Thr Leu Glu Arg Leu Arg Gly	705					710					715					720
Leu Cys Ser Met Leu Ser Gly Pro Lys Thr Leu Glu Arg Leu Arg Gly	Val	Leu	Ile	Phe	Thr	Ser	Pro	Cys	Ser	Val	Asp	Gln	Leu	Cys	Ser	Ala
					725					730					735	
				M.	Lou	Ser	Gly	Pro	Lys	Thr	Leu	Glu	Arg	Leu	Arg	Gly
	Leu	Cys	Ser	Met	Leu											
Ala Pro Glu Gly Phe Ser Arg Thr Asp Leu His Leu Ala Val Pro	Leu	Cys	Ser		Leu	501			745					750		
755 760 765				740				Thr		Leu	His	Leu	Ala		Val	Pro

Val Leu Thr Ala Leu Ile Ser Tyr His Asn Tyr Leu Asp Lys Thr Lys

	770					775					780				
Gln	Arg	Glu	Met	Val	Tyr	Cys	Leu	Glu	Gln	Gly	Leu	Ile	His	Arg	Cys
785					790					795					800
Ala	Ser	Gln	Cys	Val	Val	Ala	Leu	Ser	Ile	Cys	Ser	Val	Glu	Met	Pro
				805					810					815	
Asp	Ile	Ile	Ile	Lys	Ala	Leu	Pro	Val	Leu	Val	Val	Lys	Leu	Thr	His
			820					825					830		
Ile	Ser	Ala	Thr	Ala	Ser	Met	Ala	Val	Pro	Leu	Leu	Glu	Phe	Leu	Ser
		835					840					845			
Thr	Leu	Ala	Arg	Leu	Pro	His	Leu	Tyr	Arg	Asn	Phe	Ala	Ala	Glu	Gln
	850					855					860				
Tyr	Ala	Ser	Val	Phe	Ala	Ile	Ser	Leu	Pro	Tyr	Thr	Asn	Pro	Ser	Lys
865					870					875					880
Phe	Asn	Gln	Tyr	Ile	Val	Cys	Leu	Ala	His	His	Val	Ile	Ala	Met	Trp
				885					890					895	
Phe	Ile	Arg	Cys	Arg	Leu	Pro	Phe	Arg	Lys	Asp	Phe	Val	Pro	Phe	Ile
			900					905					910		
Thr	Lys	Gly	Leu	Arg	Ser	Asn	Val	Leu	Leu	Ser	Phe	Asp	Asp	Thr	Pro
		915					920					925			
Glu	Lys	Asp	Ser	Phe	Arg	Ala	Arg	Ser	Thr	Ser	Leu	Asn	Glu	Arg	Pro
	930					935					940				
Lys	Ser	Leu	Arg	Ile	Ala	Arg	Pro	Pro	Lys	Gln	Gly	Leu	Asn	Asn	Ser
945					950					955					960
Pro	Pro	Val	Lys	Glu	Phe	Lys	Glu	Ser	Ser	Ala	Ala	Glu	Ala	Phe	Arg
				965					970					975	
Cys	Arg	Ser	Ile	Ser	Val	Ser	Glu	His	Val	Val	Arg	Ser	Arg	Ile	Gln
			980					985					990		
Thr	Ser	Leu	Thr	Ser	Ala	Ser	Leu	Gly	Ser	Ala	Asp	Glu	Asn	Ser	Val
		995				-	1000]	1005			
Ala	Gln	Ala	Asp	Asp	Ser	Leu	Lys	Asn	Leu	His	Leu	Glu	Leu	Thr	Glu
]	1010				-	1015				-	1020				

Thr Cys Leu Asp Met Met Ala Arg Tyr Val Phe Ser Asn Phe Thr Ala Val Pro Lys Arg Ser Pro Val Gly Glu Phe Leu Leu Ala Gly Gly Arg Thr Lys Thr Trp Leu Val Gly Asn Lys Leu Val Thr Val Thr Thr Ser Val Gly Thr Gly Thr Arg Ser Leu Leu Gly Leu Asp Ser Gly Glu Leu Gln Ser Gly Pro Glu Ser Ser Ser Pro Gly Val His Val Arg Gln Thr Lys Glu Ala Pro Ala Lys Leu Glu Ser Gln Ala Gly Gln Gln Val Ser Arg Gly Ala Arg Asp Arg Val Arg Ser Met Ser Gly Gly His Gly Leu Arg Val Gly Ala Leu Asp Val Pro Ala Ser Gln Phe Leu Gly Ser Ala Thr Ser Pro Gly Pro Arg Thr Ala Pro Ala Ala Lys Pro Glu Lys Ala Ser Ala Gly Thr Arg Val Pro Val Gln Glu Lys Thr Asn Leu Ala Ala Tyr Val Pro Leu Leu Thr Gln Gly Trp Ala Glu Ile Leu Val Arg Arg Pro Thr Gly Asn Thr Ser Trp Leu Met Ser Leu Glu Asn Pro Leu Ser Pro Phe Ser Ser Asp Ile Asn Asn Met Pro Leu Gln Glu Leu Ser Asn Ala Leu Met Ala Ala Glu Arg Phe Lys Glu His Arg Asp Thr Ala Leu Tyr Lys Ser Leu Ser Val Pro Ala Ala Ser Thr Ala Lys Pro Pro Pro Leu Pro Arg Ser Asn Thr Val Ala Ser Phe Ser Ser Leu Tyr Gln

Ser Ser Cys Gln Gly Gln Leu His Arg Ser Val Ser Trp Ala Asp Ser Ala Val Val Met Glu Glu Gly Ser Pro Gly Glu Val Pro Val Leu Val Glu Pro Pro Gly Leu Glu Asp Val Glu Ala Ala Leu Gly Met Asp Arg Arg Thr Asp Ala Tyr Ser Arg Ser Ser Ser Val Ser Ser Gln Glu Glu Lys Ser Leu His Ala Glu Glu Leu Val Gly Arg Gly Ile Pro Ile Glu Arg Val Val Ser Ser Glu Gly Gly Arg Pro Ser Val Asp Leu Ser Phe Gln Pro Ser Gln Pro Leu Ser Lys Ser Ser Ser Ser Pro Glu Leu Gln

Thr Leu Gln Asp Ile Leu Gly Asp Pro Gly Asp Lys Ala Asp Val Gly Arg Leu Ser Pro Glu Val Lys Ala Arg Ser Gln Ser Gly Thr Leu Asp Gly Glu Ser Ala Ala Trp Ser Ala Ser Gly Glu Asp Ser Arg Gly Gln Pro Glu Gly Pro Leu Pro Ser Ser Ser Pro Arg Ser Pro Ser Gly Leu

Arg Pro Arg Gly Tyr Thr IIe Ser Asp Ser Ala Pro Ser Arg Arg Gly

1460

1465

1470

Lys Arg Val Glu Arg Asp Ala Leu Lys Ser Arg Ala Thr Ala Ser Asn
1475

1480

Ala Glu Lys Val Pro Gly IIe Asn Pro Ser Phe Val Phe Leu Gln Leu
1490

1495

Tyr His Ser Pro Phe Phe Gly Asp Glu Ser Asn Lys Pro IIe Leu Leu
1505

1510

1515

1520

Pro Asn Glu Ser Gln Ser Phe Glu Arg Ser Val Gln Leu Leu Asp Gln

	1525			1530		1535
Ile Pro Ser	Tyr Asp	Thr His	Lys Ile	e Ala Va	l Leu Tyı	· Val Gly Glu
	1540		154	5		1550
Gly Gln Ser	Asn Ser	Glu Leu	Ala Ile	e Leu Se	r Asn Glu	ı His Gly Ser
1555			1560		1565	5
Tyr Arg Tyr	Thr Glu	Phe Leu	Thr Gl	y Leu Gl	y Arg Lei	ı Ile Glu Leu
1570		1575			1580	
Lys Asp Cys	Gln Pro	Asp Lys	Val Ty	r Leu Gl	y Gly Lei	ı Asp Val Cys
1585		1590		159	5	1600
Gly Glu Asp	Gly Gln	Phe Thr	Tyr Cy:	s Trp Hi	s Asp Ası	o Ile Met Gln
	1605			1610		1615
Ala Val Phe		Ala Thr	Leu Me		r Lys Ası	o Val Asp Lys
	1620		162			1630
His Arg Cys	Asp Lys	Lys Arg	His Le	u Gly Asi	n Asp Phe	e Val Ser Ile
1635			1640		1645	5
Val Tyr Asn	Asp Ser	Gly Glu	Asp Pho	e Lys Le	u Gly Thi	r Ile Lys Gly
1650	-	1655			1660	
Gln Phe Asn	Phe Val	His Val	Ile Va	l Thr Pr	o Leu Ası	o Tyr Glu Cys
1665		1670		167	5	1680
1665 Asn Leu Val			Arg Ly			1680 y Leu Val Asp
	Ser Leu		Arg Lys	s Asp Me		y Leu Val Asp
Asn Leu Val	Ser Leu 1685	Gln Cys		s Asp Me 1690	t Glu Gly	V Leu Val Asp 1695
Asn Leu Val	Ser Leu 1685 Ala Lys	Gln Cys	Ser Asj	s Asp Me 1690 p Arg As	t Glu Gly	Leu Val Asp 1695 o Phe Val Ala
Asn Leu Val	Ser Leu 1685 Ala Lys 1700	Gln Cys	Ser As ₁	s Asp Me 1690 p Arg Ass	t Glu Gly n Leu Pro	Leu Val Asp 1695 De Phe Val Ala 1710
Asn Leu Val	Ser Leu 1685 Ala Lys 1700	Gln Cys Ile Val His Ala	Ser As ₁	s Asp Me 1690 p Arg Ass	t Glu Gly n Leu Pro	Leu Val Asp 1695 Phe Val Ala 1710 I His His Ser
Asn Leu Val Thr Ser Val Arg Gln Met 1715	Ser Leu 1685 Ala Lys 1700 Ala Leu	Gln Cys Ile Val His Ala	Ser Asj 1709 Asn Me 1720	s Asp Me 1690 p Arg Ass 5 t Ala Se	t Glu Gly n Leu Pro r Gln Va: 1729	Leu Val Asp 1695 Phe Val Ala 1710 I His His Ser
Asn Leu Val Thr Ser Val Arg Gln Met 1715	Ser Leu 1685 Ala Lys 1700 Ala Leu	Gln Cys Ile Val His Ala	Ser Asj 1709 Asn Me 1720 Tyr Pro	s Asp Me 1690 p Arg Ass 5 t Ala Se	t Glu Gly n Leu Pro r Gln Va: 1729	V Leu Val Asp 1695 D Phe Val Ala 1710 I His His Ser
Asn Leu Val Thr Ser Val Arg Gln Met 1715 Arg Ser Asn	Ser Leu 1685 Ala Lys 1700 Ala Leu	Gln Cys Ile Val His Ala Asp Ile	Ser Asj 1709 Asn Me 1720 Tyr Pro	s Asp Me 1690 p Arg Ass 5 t Ala Se	t Glu Gly n Leu Pro r Gln Va 1729 s Trp Ilo	V Leu Val Asp 1695 D Phe Val Ala 1710 I His His Ser
Asn Leu Val Thr Ser Val Arg Gln Met 1715 Arg Ser Asn 1730	Ser Leu 1685 Ala Lys 1700 Ala Leu Pro Thr	Gln Cys Ile Val His Ala Asp Ile 1735	Ser Asj 1709 Asn Me 1720 Tyr Pro	s Asp Me 1690 p Arg Ass 5 t Ala Se o Ser Ly	t Glu Gly n Leu Pro r Gln Va: 1728 s Trp Ile 1740	V Leu Val Asp 1695 D Phe Val Ala 1710 I His His Ser
Asn Leu Val Thr Ser Val Arg Gln Met 1715 Arg Ser Asn 1730	Ser Leu 1685 Ala Lys 1700 Ala Leu Pro Thr	Gln Cys Ile Val His Ala Asp Ile 1735	Ser Asj 1709 Asn Me 1720 Tyr Pro	s Asp Me 1690 p Arg Ass 5 t Ala Se o Ser Ly	t Glu Gly n Leu Pro r Gln Va: 1728 s Trp Ilo 1740 s Glu Glu	1695 Phe Val Ala 1710 His His Ser 6
Asn Leu Val Thr Ser Val Arg Gln Met 1715 Arg Ser Asn 1730 Arg His Ile 1745	Ser Leu 1685 Ala Lys 1700 Ala Leu Pro Thr	Gln Cys Ile Val His Ala Asp Ile 1735 Leu Arg	Ser Asj 1709 Asn Me 1720 Tyr Pro	s Asp Me 1690 p Arg Ass 5 t Ala Se p Ser Ly g Ile Cy 175	t Glu Gly n Leu Pro r Gln Va: 1728 s Trp Ilo 1740 s Glu Glu	1695 Phe Val Ala 1710 His His Ser Control Ala Arg Leu Ala Arg Leu Ala Ala Ala Tyr
Asn Leu Val Thr Ser Val Arg Gln Met 1715 Arg Ser Asn 1730 Arg His Ile 1745	Ser Leu 1685 Ala Lys 1700 Ala Leu Pro Thr	Gln Cys Ile Val His Ala Asp Ile 1735 Leu Arg	Ser Asj 1709 Asn Me 1720 Tyr Pro	s Asp Me 1690 p Arg Ass 5 t Ala Se p Ser Ly g Ile Cy 175	t Glu Gly n Leu Pro r Gln Va: 1728 s Trp Ilo 1740 s Glu Glu	1695 Phe Val Ala 1710 His His Ser Control Ala Arg Leu Ala Arg Leu Ala Ala Tyr 1760

Pro Ala Gln Thr Pro Ala Glu Pro Thr Pro Gly Tyr Glu Val Gly Gln

1780	1785	1790	
Arg Lys Arg Leu Ile Ser Se	r Val Glu Asp Phe	Thr Glu Phe Val	
1795	1800	1805	
<210> 7			
<211> 1398			
<212> DNA			
<213> Homo sapiens			
<220><221> gene			
<222> (1)(1398)			
<223> wild type AKT3			
<400> 7			
atgagcgatg ttaccattgt gaaa	gaaggt tgggttcaga	agaggggaga atatataa	aa 60
aactggaggc caagatactt cctt	ttgaag acagatggct	cattcatagg atataaag	ag 120
aaacctcaag atgtggattt acct	tatccc ctcaacaact	tttcagtggc aaaatgcc	ag 180
ttaatgaaaa cagaacgacc aaag	ccaaac acatttataa	tcagatgtct ccagtgga	et 240
actgttatag agagaacatt tcat	gtagat actccagagg	aaagggaaga atggacag	aa 300
gctatccagg ctgtagcaga caga	ctgcag aggcaagaag	aggagagaat gaattgta	gt 360
ccaacttcac aaattgataa tata	ggagag gaagagatgg	atgeetetae aacceates	at 420
aaaagaaaga caatgaatga tttt	gactat ttgaaactac	taggtaaagg cacttttg	gg 480
aaagttattt tggttcgaga gaag	gcaagt ggaaaatact	atgctatgaa gattctga	ag 540
aaagaagtca ttattgcaaa ggat	gaagtg gcacacactc	taactgaaag cagagtat	ta 600
aagaacacta gacatccctt ttta	acatcc ttgaaatatt	ccttccagac aaaagacc	gt 660
ttgtgttttg tgatggaata tgtt	aatggg ggcgagctgt	ttttccattt gtcgagag	ag 720
cgggtgttct ctgaggaccg caca	cgtttc tatggtgcag	aaattgtctc tgccttgg	ac 780
tatctacatt ccggaaagat tgtg			
aaagatggcc acataaaaat taca			
gccaccatga agacattctg tggc			
aatgactatg gccgagcagt agac			
tgtgggaggt tacctttcta caac			
gaagacatta aatttcctcg aaca			
		2 366	

ttgataaagg atccaaataa acgccttggt ggaggaccag atgatgcaaa agaaattatg

1320

13801398

agacacagtt tcttctctgg agtaaactgg caagatgtat atgataaaaa gcttgtacct ccttttaaac ctcaagtaac atctgagaca gatactagat attttgatga agaatttaca gctcagacta ttacaataac accacctgaa aaatgtcagc aatcagattg tggcatgctg ggtaactgga aaaaataa <210> 8 <211> 465 <212> PRT <213> Homo sapiens <220><221> PEPTIDE <222> (1)...(465)<223> wild type AKT3 <400> Met Ser Asp Val Thr Ile Val Lys Glu Gly Trp Val Gln Lys Arg Gly 1 10 Glu Tyr Ile Lys Asn Trp Arg Pro Arg Tyr Phe Leu Leu Lys Thr Asp 25 Gly Ser Phe Ile Gly Tyr Lys Glu Lys Pro Gln Asp Val Asp Leu Pro 35 40 Tyr Pro Leu Asn Asn Phe Ser Val Ala Lys Cys Gln Leu Met Lys Thr 50 60 55 Glu Arg Pro Lys Pro Asn Thr Phe Ile Ile Arg Cys Leu Gln Trp Thr 70 75 65 80 Thr Val Ile Glu Arg Thr Phe His Val Asp Thr Pro Glu Glu Arg Glu 85 90 Glu Trp Thr Glu Ala Ile Gln Ala Val Ala Asp Arg Leu Gln Arg Gln 105 Glu Glu Glu Arg Met Asn Cys Ser Pro Thr Ser Gln Ile Asp Asn Ile 120 Gly Glu Glu Het Asp Ala Ser Thr Thr His His Lys Arg Lys Thr 130 135 140 Met Asn Asp Phe Asp Tyr Leu Lys Leu Leu Gly Lys Gly Thr Phe Gly

145

150

160

Lys Val Ile	Leu Val	Arg Gl	u Lys	Ala	Ser	Gly	Lys	Tyr	Tyr	Ala	Met
	165				170					175	
Lys Ile Leu	Lys Lys	Glu Va	l Ile	Ile	Ala	Lys	Asp	Glu	Val	Ala	His
	180			185					190		
Thr Leu Thr	Glu Ser	Arg Va	l Leu	Lys	Asn	Thr	Arg	His	Pro	Phe	Leu
195			200					205			
Thr Ser Leu	Lys Tyr	Ser Ph	e Gln	Thr	Lys	Asp	Arg	Leu	Cys	Phe	Val
210		21	.5				220				
Met Glu Tyr	Val Asn	Gly Gl	y Glu	Leu	Phe	Phe	His	Leu	Ser	Arg	Glu
225		230				235					240
Arg Val Phe	Ser Glu	Asp Ar	g Thr	Arg	Phe	Tyr	Gly	Ala	Glu	Ile	Val
	245				250					255	
Ser Ala Leu	Asp Tyr	Leu Hi	s Ser	Gly	Lys	Ile	Val	Tyr	Arg	Asp	Leu
	260			265					270		
Lys Leu Glu	Asn Leu	Met Le	u Asp	Lys	Asp	Gly	His	Ile	Lys	Ile	Thr
275			280					285			
	Leu Cys	Lys Gl		Ile	Thr	Asp	Ala		Thr	Met	Lys
275 Asp Phe Gly 290	Leu Cys	Lys Gl	u Gly	Ile	Thr	Asp	Ala 300		Thr	Met	Lys
Asp Phe Gly		29	u Gly 5				300	Ala			
Asp Phe Gly 290		29	u Gly 5				300	Ala			
Asp Phe Gly 290 Thr Phe Cys	Gly Thr	29 Pro Gl 310	u Gly 5 u Tyr	Leu	Ala	Pro 315	300 Glu	Ala Val	Leu	Glu	Asp 320
Asp Phe Gly 290 Thr Phe Cys 305	Gly Thr	29 Pro Gl 310 Ala Va	u Gly 5 u Tyr	Leu Trp	Ala	Pro 315	300 Glu	Ala Val	Leu	Glu	Asp 320
Asp Phe Gly 290 Thr Phe Cys 305	Gly Thr Gly Arg 325	29 Pro Gl 310 Ala Va	u Gly 5 u Tyr	Leu Trp	Ala Trp 330	Pro 315 Gly	300 Glu Leu	Ala Val Gly	Leu Val	Glu Val 335	Asp 320 Met
Asp Phe Gly 290 Thr Phe Cys 305 Asn Asp Tyr	Gly Thr Gly Arg 325	29 Pro Gl 310 Ala Va	u Gly 5 u Tyr	Leu Trp	Ala Trp 330	Pro 315 Gly	300 Glu Leu	Ala Val Gly	Leu Val	Glu Val 335	Asp 320 Met
Asp Phe Gly 290 Thr Phe Cys 305 Asn Asp Tyr	Gly Thr Gly Arg 325 Met Cys	29 Pro Gl 310 Ala Va	u Gly 5 u Tyr	Leu Trp Pro	Ala Trp 330	Pro 315 Gly	300 Glu Leu	Ala Val Gly	Leu Val Asp	Glu Val 335	Asp 320 Met
Asp Phe Gly 290 Thr Phe Cys 305 Asn Asp Tyr Tyr Glu Met	Gly Thr Gly Arg 325 Met Cys 340	Pro Gl 310 Ala Va Gly Ar	u Gly 5 u Tyr l Asp g Leu	Leu Trp Pro 345	Ala Trp 330 Phe	Pro 315 Gly Tyr	300 Glu Leu Asn	Ala Val Gly	Leu Val Asp 350	Glu Val 335 His	Asp 320 Met Glu
Asp Phe Gly 290 Thr Phe Cys 305 Asn Asp Tyr Tyr Glu Met Lys Leu Phe	Gly Thr Gly Arg 325 Met Cys 340	Pro Gl 310 Ala Va Gly Ar	u Gly 5 u Tyr I Asp g Leu	Leu Trp Pro 345	Ala Trp 330 Phe	Pro 315 Gly Tyr	300 Glu Leu Asn	Ala Val Gly Gln	Leu Val Asp 350	Glu Val 335 His	Asp 320 Met Glu
Asp Phe Gly 290 Thr Phe Cys 305 Asn Asp Tyr Tyr Glu Met Lys Leu Phe 355	Gly Thr Gly Arg 325 Met Cys 340 Glu Leu	Pro GI 310 Ala Va Gly Ar	u Gly 5 u Tyr 1 Asp g Leu nu Met 360	Leu Trp Pro 345 Glu	Trp 330 Phe	Pro 315 Gly Tyr	300 Glu Leu Asn	Ala Val Gly Gln Phe 365	Val Asp 350	Glu Val 335 His	Asp 320 Met Glu
Asp Phe Gly 290 Thr Phe Cys 305 Asn Asp Tyr Tyr Glu Met Lys Leu Phe 355 Leu Ser Ser	Gly Thr Gly Arg 325 Met Cys 340 Glu Leu	Pro GI 310 Ala Va Gly Ar Ile Le	u Gly 5 u Tyr 1 Asp g Leu nu Met 360 er Leu	Leu Trp Pro 345 Glu	Trp 330 Phe	Pro 315 Gly Tyr	300 Glu Leu Asn Lys	Ala Val Gly Gln Phe 365	Val Asp 350	Glu Val 335 His	Asp 320 Met Glu
Asp Phe Gly 290 Thr Phe Cys 305 Asn Asp Tyr Tyr Glu Met Lys Leu Phe 355 Leu Ser Ser 370	Gly Thr Gly Arg 325 Met Cys 340 Glu Leu Asp Ala	Pro GI 310 Ala Va Gly Ar Ile Le Lys Se 37	u Gly 5 u Tyr 1 Asp g Leu 2 Met 360 er Leu 5	Leu Trp Pro 345 Glu Leu	Ala Trp 330 Phe Asp	Pro 315 Gly Tyr Ile	300 Glu Leu Asn Lys Leu 380	Ala Val Gly Gln Phe 365 Leu	Val Asp 350 Pro	Glu Val 335 His	Asp 320 Met Glu Thr
Asp Phe Gly 290 Thr Phe Cys 305 Asn Asp Tyr Tyr Glu Met Lys Leu Phe 355 Leu Ser Ser	Gly Thr Gly Arg 325 Met Cys 340 Glu Leu Asp Ala	Pro GI 310 Ala Va Gly Ar Ile Le Lys Se 37	u Gly 5 u Tyr 1 Asp g Leu 2 Met 360 er Leu 5	Leu Trp Pro 345 Glu Leu	Ala Trp 330 Phe Asp	Pro 315 Gly Tyr Ile	300 Glu Leu Asn Lys Leu 380	Ala Val Gly Gln Phe 365 Leu	Val Asp 350 Pro	Glu Val 335 His	Asp 320 Met Glu Thr

405 410 415

Lys Leu Val Pro Pro Phe Lys Pro Gln Val Thr Ser Glu Thr Asp Thr

420	425	430	
Arg Tyr Phe Asp Glu G	lu Phe Thr Ala Gln Ti	nr Ile Thr Ile Thr Pro	
435	440	445	
Pro Glu Lys Cys Gln G	ln Ser Asp Cys Gly Mo	et Leu Gly Asn Trp Lys	
450	455	460	
Lys			
465			
<210> 9			
<211> 3207			
<212> DNA			
<213> Homo sapiens			
<220><221> gene			
<222> (1)(3207)			
<223> wild type PI	K3CA		
<400> 9			
atgcctccac gaccatcatc	aggtgaactg tggggcate	cc acttgatgcc cccaagaatc	60
ctagtagaat gtttactacc	aaatggaatg atagtgac	tt tagaatgeet eegtgagget	120
acattaataa ccataaagca	tgaactattt aaagaagc	aa gaaaataccc cctccatcaa	180
cttcttcaag atgaatcttc	ttacattttc gtaagtgt	ta ctcaagaagc agaaagggaa	240
gaattttttg atgaaacaag	acgactttgt gaccttcg	gc tttttcaacc ctttttaaaa	300
gtaattgaac cagtaggcaa	ccgtgaagaa aagatcct	ca atcgagaaat tggttttgct	360
atcggcatgc cagtgtgtga	atttgatatg gttaaaga	tc cagaagtaca ggacttccga	420
agaaatattc tgaacgtttg	taaagaagct gtggatct	ta gggacctcaa ttcacctcat	480
agtagagcaa tgtatgtcta	tcctccaaat gtagaatc	tt caccagaatt gccaaagcac	540
atatataata aattagataa	agggcaaata atagtggt	ga tctgggtaat agtttctcca	600
aataatgaca agcagaagta	tactctgaaa atcaacca	tg actgtgtacc agaacaagta	660
attgctgaag caatcaggaa	aaaaactcga agtatgtt	gc tatcctctga acaactaaaa	720
ctctgtgttt tagaatatca	gggcaagtat attttaaa	ag tgtgtggatg tgatgaatac	780
ttcctagaaa aatatcctct	gagtcagtat aagtatata	aa gaagctgtat aatgcttggg	840
			000

 $aggatgccca\ atttgatgtt\ gatggctaaa\ gaaagccttt\ attctcaact\ gccaatggac$

tgttttacaa tgccatctta ttccagac	gc atttccacag	ctacaccata	tatgaatgga	960
gaaacatcta caaaatccct ttgggtta	ta aatagtgcac	tcagaataaa	aattctttgt	1020
gcaacctacg tgaatgtaaa tattcgag	ac attgataaga	tctatgttcg	aacaggtatc	1080
taccatggag gagaaccctt atgtgaca	at gtgaacactc	aaagagtacc	ttgttccaat	1140
cccaggtgga atgaatggct gaattatg	at atatacattc	ctgatcttcc	tcgtgctgct	1200
cgactttgcc tttccatttg ctctgtta	aa ggccgaaagg	gtgctaaaga	ggaacactgt	1260
ccattggcat ggggaaatat aaacttgt	tt gattacacag	acactctagt	atctggaaaa	1320
atggctttga atctttggcc agtacctc	at ggattagaag	atttgctgaa	ccctattggt	1380
gttactggat caaatccaaa taaagaaa	ct ccatgcttag	agttggagtt	tgactggttc	1440
agcagtgtgg taaagttccc agatatgt	ca gtgattgaag	agcatgccaa	ttggtctgta	1500
tcccgagaag caggatttag ctattccc	ac gcaggactga	gtaacagact	agctagagac	1560
aatgaattaa gggaaaatga caaagaac	ag ctcaaagcaa	tttctacacg	agatcctctc	1620
tctgaaatca ctgagcagga gaaagatt	tt ctatggagtc	acagacacta	ttgtgtaact	1680
atccccgaaa ttctacccaa attgcttc	tg tctgttaaat	ggaattctag	agatgaagta	1740
gcccagatgt attgcttggt aaaagatt	gg cctccaatca	aacctgaaca	ggctatggaa	1800
cttctggact gtaattaccc agatccta				1860
aaatatttaa cagatgacaa actttctc				1920
tatgaacaat atttggataa cttgcttg				1980
caaaggattg ggcacttttt cttttggc	at ttaaaatctg	agatgcacaa	taaaacagtt	2040
agccagaggt ttggcctgct tttggagt	cc tattgtcgtg	catgtgggat	gtatttgaag	2100
cacctgaata ggcaagtcga ggcaatgg				2160
caggagaaga aggatgaaac acaaaag	eta cagatgaagt	ttttagttga	acasat asaa	2220
caggagaaga aggatgaaac acaaaagg cgaccagatt tcatggatgc tctacagg				2280
ctaggaaacc tcaggcttga agagtgtc				2340
ttgaattggg agaacccaga catcatgt				2400
tttaaaaatg gggatgattt acggcaag				2460
gaaaatatct ggcaaaatca aggtcttg				2520
atcggtgact gtgtgggact tattgagg				2580
urvagiguvi gigigggavi iailgagg	rs sisigaaall	cicacaciai	ιαιχυαααιι	2000
cagtgcaaag gcggcttgaa aggtgcac				2640
ctcaaagaca agaacaaagg agaaatat				2700
tgtgctggat actgtgtagc taccttca	tt ttgggaattg	gagatcgtca	caatagtaac	2760

2940 3000

3060 3120

3180

3207

atcatggtga aagacgatgg acaactgttt catatagatt ttggacactt tttggatcac aagaagaaaa aatttggtta taaacgagaa cgtgtgccat ttgttttgac acaggatttc ttaatagtga ttagtaaagg agcccaagaa tgcacaaaga caagagaatt tgagaggttt caggagatgt gttacaaggc ttatctagct attcgacagc atgccaatct cttcataaat cttttctcaa tgatgcttgg ctctggaatg ccagaactac aatcttttga tgacattgca tacattegaa agaceetage ettagataaa aetgageaag aggetttgga gtattteatg aaacaaatga atgatgcaca tcatggtggc tggacaacaa aaatggattg gatcttccac acaattaaac agcatgcatt gaactga <210> 10 <211> 1068 <212> PRT <213> Homo sapiens <220><221> PEPTIDE <222> (1)..(1068) <223> wild type PIK3CA <400> Met Pro Pro Arg Pro Ser Ser Gly Glu Leu Trp Gly Ile His Leu Met 1 5 15 Pro Pro Arg Ile Leu Val Glu Cys Leu Leu Pro Asn Gly Met Ile Val 20 25 Thr Leu Glu Cys Leu Arg Glu Ala Thr Leu Ile Thr Ile Lys His Glu 35 40 45 Leu Phe Lys Glu Ala Arg Lys Tyr Pro Leu His Gln Leu Leu Gln Asp 50 55 Glu Ser Ser Tyr Ile Phe Val Ser Val Thr Gln Glu Ala Glu Arg Glu 70 65 75 80 Glu Phe Phe Asp Glu Thr Arg Arg Leu Cys Asp Leu Arg Leu Phe Gln 90 Pro Phe Leu Lys Val Ile Glu Pro Val Gly Asn Arg Glu Glu Lys Ile 105

Leu Asn Arg Glu Ile Gly Phe Ala Ile Gly Met Pro Val Cys Glu Phe

120

115

Asp Met Val Lys Asp Pro Glu Val Gln Asp Phe Arg Arg Asn Ile Leu Asn Val Cys Lys Glu Ala Val Asp Leu Arg Asp Leu Asn Ser Pro His Ser Arg Ala Met Tyr Val Tyr Pro Pro Asn Val Glu Ser Ser Pro Glu Leu Pro Lys His Ile Tyr Asn Lys Leu Asp Lys Gly Gln Ile Ile Val Val Ile Trp Val Ile Val Ser Pro Asn Asn Asp Lys Gln Lys Tyr Thr Leu Lys Ile Asn His Asp Cys Val Pro Glu Gln Val Ile Ala Glu Ala Ile Arg Lys Lys Thr Arg Ser Met Leu Leu Ser Ser Glu Gln Leu Lys Leu Cys Val Leu Glu Tyr Gln Gly Lys Tyr Ile Leu Lys Val Cys Gly Cys Asp Glu Tyr Phe Leu Glu Lys Tyr Pro Leu Ser Gln Tyr Lys Tyr Ile Arg Ser Cys Ile Met Leu Gly Arg Met Pro Asn Leu Met Leu Met Ala Lys Glu Ser Leu Tyr Ser Gln Leu Pro Met Asp Cys Phe Thr Met Pro Ser Tyr Ser Arg Arg Ile Ser Thr Ala Thr Pro Tyr Met Asn Gly Glu Thr Ser Thr Lys Ser Leu Trp Val Ile Asn Ser Ala Leu Arg Ile Lys Ile Leu Cys Ala Thr Tyr Val Asn Val Asn Ile Arg Asp Ile Asp Lys Ile Tyr Val Arg Thr Gly Ile Tyr His Gly Gly Glu Pro Leu Cys

Asp Asn Val Asn Thr Gln Arg Val Pro Cys Ser Asn Pro Arg Trp Asn

	370					375					380				
Glu	Trp	Leu	Asn	Tyr	Asp	Ile	Tyr	Ile	Pro	Asp	Leu	Pro	Arg	Ala	Ala
385					390					395					400
Arg	Leu	Cys	Leu	Ser	Ile	Cys	Ser	Val	Lys	Gly	Arg	Lys	Gly	Ala	Lys
				405					410					415	
Glu	Glu	His	Cys	Pro	Leu	Ala	Trp	Gly	Asn	Ile	Asn	Leu	Phe	Asp	Tyr
			420					425					430		
Thr	Asp	Thr	Leu	Val	Ser	Gly	Lys	Met	Ala	Leu	Asn	Leu	Trp	Pro	Val
		435					440					445			
Pro	His	Gly	Leu	Glu	Asp	Leu	Leu	Asn	Pro	Ile	Gly	Val	Thr	Gly	Ser
	450					455					460				
Asn	Pro	Asn	Lys	Glu	Thr	Pro	Cys	Leu	Glu	Leu	Glu	Phe	Asp	Trp	Phe
465					470					475					480
Ser	Ser	Val	Val	Lys	Phe	Pro	Asp	Met	Ser	Val	Ile	Glu	Glu	His	Ala
				485					490					495	
Asn	Trp	Ser	Val	Ser	Arg	Glu	Ala	Gly	Phe	Ser	Tyr	Ser	His	Ala	Gly
			500					505					510		
Leu	Ser	Asn	Arg	Leu	Ala	Arg	Asp	Asn	Glu	Leu	Arg	Glu	Asn	Asp	Lys
		515					520					525			
Glu	Gln	Leu	Lve			0	T)							. .	Thr
			LyS	Ala	He	Ser	Ihr	Arg	Asp	Pro	Leu	Ser	Glu	He	
	530		LyS	Ala	He	Ser 535	Ihr	Arg	Asp	Pro	Leu 540	Ser	Glu	He	
Glu	530 Gln	Glu				535					540				
Glu 545		Glu				535					540				
545			Lys	Asp	Phe 550	535 Leu	Trp	Ser	His	Arg 555	540 His	Tyr	Cys	Val	Thr 560
545	Gln		Lys	Asp	Phe 550	535 Leu	Trp	Ser	His	Arg 555	540 His	Tyr	Cys	Val	Thr 560
545 Ile	Gln	Glu	Lys	Asp Leu 565	Phe 550 Pro	535 Leu Lys	Trp Leu	Ser Leu	His Leu 570	Arg 555 Ser	540 His	Tyr	Cys	Val Asn 575	Thr 560 Ser
545 Ile	Gln Pro	Glu	Lys	Asp Leu 565	Phe 550 Pro	535 Leu Lys	Trp Leu	Ser Leu	His Leu 570	Arg 555 Ser	540 His	Tyr	Cys	Val Asn 575	Thr 560 Ser
545 Ile	Gln Pro	Glu	Lys	Asp Leu 565	Phe 550 Pro	535 Leu Lys	Trp Leu	Ser Leu	His Leu 570	Arg 555 Ser	540 His	Tyr	Cys	Val Asn 575	Thr 560 Ser
545 Ile Arg	Gln Pro	Glu	Lys Ile Val	Asp Leu 565 Ala	Phe 550 Pro	535 Leu Lys Met	Trp Leu Tyr	Ser Leu Cys	His Leu 570 Leu	Arg 555 Ser Val	540 His Val	Tyr Lys Asp	Cys Trp Trp	Val Asn 575 Pro	Thr 560 Ser Pro
545 Ile Arg	Gln Pro Asp	Glu	Lys Ile Val	Asp Leu 565 Ala	Phe 550 Pro	535 Leu Lys Met	Trp Leu Tyr	Ser Leu Cys	His Leu 570 Leu	Arg 555 Ser Val	540 His Val	Tyr Lys Asp	Cys Trp Trp	Val Asn 575 Pro	Thr 560 Ser Pro
545 Ile Arg	Gln Pro Asp	Glu Glu Pro 595	Lys Ile Val 580 Glu	Asp Leu 565 Ala	Phe 550 Pro Gln	535 Leu Lys Met	Trp Leu Tyr Glu 600	Ser Leu Cys 585 Leu	His Leu 570 Leu	Arg 555 Ser Val	540 His Val Lys	Tyr Lys Asp Asn 605	Cys Trp Trp 590 Tyr	Val Asn 575 Pro	Thr 560 Ser Pro
545 Ile Arg	Gln Pro Asp	Glu Glu Pro 595	Lys Ile Val 580 Glu	Asp Leu 565 Ala	Phe 550 Pro Gln	535 Leu Lys Met	Trp Leu Tyr Glu 600	Ser Leu Cys 585 Leu	His Leu 570 Leu	Arg 555 Ser Val	540 His Val Lys	Tyr Lys Asp Asn 605	Cys Trp Trp 590 Tyr	Val Asn 575 Pro	Thr 560 Ser Pro

Asp Asp Lys Leu Ser Gln Tyr Leu Ile Gln Leu Val Gln Val Leu Lys

625					630					635					640
Tyr	Glu	Gln	Tyr	Leu	Asp	Asn	Leu	Leu	Val	Arg	Phe	Leu	Leu	Lys	Lys
				645					650					655	
Ala	Leu	Thr	Asn	Gln	Arg	Ile	Gly	His	Phe	Phe	Phe	Trp	His	Leu	Lys
			660					665				-	670		
Ser	Glu	Met		Asn	Lys	Thr	Val	Ser	Gln	Arg	Phe	Gly	Leu	Leu	Leu
		675					680					685			
Glu	Ser	Tyr	Cys	Arg	Ala	Cys	Gly	Met	Tyr	Leu	Lys	His	Leu	Asn	Arg
	690					695					700				
Gln	Val	Glu	Ala	Met	Glu	Lys	Leu	Ile	Asn	Leu	Thr	Asp	Ile	Leu	Lys
705					710					715					720
Gln	Glu	Lys	Lys	Asp	Glu	Thr	Gln	Lys	Val	Gln	Met	Lys	Phe	Leu	Val
				725					730					735	
Glu	Gln	Met	Aro		Pro	Asn	Phe	Met		Ala	Len	Gln	Glv	Phe	Len
uru	um	mc c	740	111 8	110	пор	THE	745	пор	mu	Deu	um	750	THE	Deu
Ser	Pro	Len		Pro	Ala	His	Gln		Glv	Asn	Len	Arø		Glu	Glu
Der		755	71011		ma	1110	760	Beu	ary	11011	Beu	765	Deu	uru	diu
Cvs	Arg		Met	Ser	Ser	Ala		Arg	Pro	Len	Trn		Asn	Trp	Glu
0,2	770					775	2,0	0		204	780	Dou		P	
Asn		Asp	He	Met	Ser		Leu	Leu	Phe	Gln		Asn	Glu	Ile	He
785					790					795					800
DI		4	0.1	4	4		4	0.1	4	W.		T)		01	T.1
Pne	Lys	Asn	Gly		Asp	Leu	Arg	GIN		мет	Leu	Inr	Leu	Gln	He
T1.	Λ	T1.	W - 4	805	Λ	T1.	Т	C1	810	C1	C1	Ι	Λ	815	Λ
He	Arg	11e		Glu	Asn	He	1rp		Asn	GIN	Gly	Leu		Leu	Arg
M	т	D	820	C1	C	т	C	825	C1	Λ.	C	77 1	830		T 1
мет	Leu		lyr	Gly	Cys	Leu		11e	Gly	Asp	Cys		Gly	Leu	He
C1	1 7. 1	835 V-1	Λ.	Λ.	C.	п.	840	т 1	M. ·	C1	т 1	845	C-	T -	C1
ulu		val	Arg	Asn	Ser		ıhr	11e	мet	GIN		GIN	Cys	Lys	uly
C1	850	т	C1	Λ 1	т	855	Di	Λ	C	п.	860	T	11.	CI	т
uly	Leu	Lys	Gly	Ala	Leu	GIN	rhe	Asn	ser	НIS	ıhr	Leu	H1S	Gln	ırp
865					870					875					880

Leu Lys Asp Lys Asn Lys Gly Glu Ile Tyr Asp Ala Ala Ile Asp Leu 885 890 Phe Thr Arg Ser Cys Ala Gly Tyr Cys Val Ala Thr Phe Ile Leu Gly 905 Ile Gly Asp Arg His Asn Ser Asn Ile Met Val Lys Asp Asp Gly Gln 920 Leu Phe His Ile Asp Phe Gly His Phe Leu Asp His Lys Lys Lys 930 935 940 Phe Gly Tyr Lys Arg Glu Arg Val Pro Phe Val Leu Thr Gln Asp Phe 945 950 955 960 Leu Ile Val Ile Ser Lys Gly Ala Gln Glu Cys Thr Lys Thr Arg Glu 965 970 Phe Glu Arg Phe Gln Glu Met Cys Tyr Lys Ala Tyr Leu Ala Ile Arg 985 Gln His Ala Asn Leu Phe Ile Asn Leu Phe Ser Met Met Leu Gly Ser 1000 1005 Gly Met Pro Glu Leu Gln Ser Phe Asp Asp Ile Ala Tyr Ile Arg Lys 1010 1015 1020 Thr Leu Ala Leu Asp Lys Thr Glu Gln Glu Ala Leu Glu Tyr Phe Met 1025 1030 1035 1040 Lys Gln Met Asn Asp Ala His His Gly Gly Trp Thr Thr Lys Met Asp 1045 1050 1055

Trp Ile Phe His Thr Ile Lys Gln His Ala Leu Asn

1060 1065

<210> 11

<211>

<212> DNA

20

<213> Artificial Sequence

<220><223> C1483 sense primer

<400> 11

taggttacag gcctggatgg 20

<210> 12

<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220><223	3> C1483 antisense primer	
<400>	12	
cttggcct	cc caaaatgtta	20
<210>	13	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220><223	3> L2427 sense primer	
<400>	13	
tccaggcta	ac ctggtatgag a	21
<210>	14	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220><223	3> L2427 antisense primer	
<400>	14	
gccttcct	tt caaatccaaa	20
<210>	15	
<211>	36	
<212>	DNA	
<213>	Artificial Sequence	
<220><223	annealing forward primer for pCIG-mTOR mutant-IRES-EGFP	
<400>	15	
aattccaat	tt gcccgggctt aagatcgata cgcgta	36
<210>	16	
<211>	36	
<212>	DNA	
<213>	Artificial Sequence	
<220><223	3	
> anne	ealing reverse primer for pCIG-mTOR mutant-IRES-EGFP	
	· · · · · · · · · · · · · · · · · · ·	

<400>

ccggtacg	gcg tatcgatctt aagcccgggc aattgg	36
<210>	17	
<211>	50	
<212>	DNA	
<213>	Artificial Sequence	
<220><22	forward primer for pCIG-mTOR mutant-IRES-EGFP	
<400>	17	
gatcacaa	att gtggccacca tggactacaa ggacgacgat gacaagatgc	50
<210>	18	
<211>	41	
<212>	DNA	
<213>	Artificial Sequence	
<220><22	23> reverse primer for pCIG-mTOR mutant-IRES-EGFP	
<400>	18	
tgatcaac	ege gtttaccaga aagggcacca gccaatatag c	41
<210>	19	
<211>	33	
<212>	DNA	
<213>	Artificial Sequence	
<220><22	23> Y1450D sense primer	
<400>	19	
tcgtgcag	gtt tctcatccca ggtagcctgg atc	33
<210>	20	
<211>	33	
<212>	DNA	
<213>	Artificial Sequence	
<220><22	23> Y1450D antisense primer	
<400>	20	
gatccagg	gct acctgggatg agaaactgca cga	33
<210>	21	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	

<220><2	23> C1483R sense primer	
<400>	21	
ggcctcg	agg cggcgcatgc ggc	23
<210>	22	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220><2	23> C1483R antisense primer	
<400>	22	
gccgcat	gcg ccgcctcgag gcc	23
<210>	23	
<211>	33	
<212>	DNA	
<213>	Artificial Sequence	
<220><2	23> L2427Q sense primer	
<400>	23	
gtctatg	acc ccttgcagaa ctggaggctg atg	33
gtctatg <210>	acc cettgcagaa etggaggetg atg	33
		33
<210>	24	33
<210> <211>	24 33	33
<210> <211> <212>	24 33 DNA Artificial Sequence	33
<210> <211> <212> <213>	24 33 DNA Artificial Sequence	33
<210> <211> <211> <212> <213> <220><2 <400>	24 33 DNA Artificial Sequence 23> L2427Q antisense primer	33
<210> <211> <211> <212> <213> <220><2 <400>	24 33 DNA Artificial Sequence 23> L2427Q antisense primer 24	
<210> <211> <212> <213> <220><2 <400> cat cage	24 33 DNA Artificial Sequence 23> L2427Q antisense primer 24 ctc cagttctgca aggggtcata gac	
<210> <211> <211> <212> <213> <220><2 <400> cat cage <210>	24 33 DNA Artificial Sequence 23> L2427Q antisense primer 24 ctc cagttctgca aggggtcata gac 25	
<210> <211> <211> <212> <213> <220><2 <400> cat cage <210> <211>	24 33 DNA Artificial Sequence 23> L2427Q antisense primer 24 ctc cagttctgca aggggtcata gac 25 33	
<210> <211> <211> <212> <213> <220><2 <400> cat cage <210> <211> <211>	24 33 DNA Artificial Sequence 23> L2427Q antisense primer 24 ctc cagttctgca aggggtcata gac 25 33 DNA Artificial Sequence	
<210> <211> <211> <212> <213> <220><2 <400> cat cage <210> <211> <212> <213>	24 33 DNA Artificial Sequence 23> L2427Q antisense primer 24 ctc cagttctgca aggggtcata gac 25 33 DNA Artificial Sequence	
<210> <211> <211> <212> <213> <220><2 <400> cat cagc <210> <211> <212> <213> <220><2 <400>	24 33 DNA Artificial Sequence 23> L2427Q antisense primer 24 ctc cagttctgca aggggtcata gac 25 33 DNA Artificial Sequence 23> L2427P sense primer	
<210> <211> <211> <212> <213> <220><2 <400> cat cagc <210> <211> <212> <213> <220><2 <400>	24 33 DNA Artificial Sequence 23> L2427Q antisense primer 24 etc cagttetgea aggggteata gae 25 33 DNA Artificial Sequence 23> L2427P sense primer 25	33

<212>	DNA	
<213>	Artificial Sequence	
<220><22	3> L2427P antisense primer	
<400>	26	
catcagcc	tc cagttcggca aggggtcata gac	33
<210>	27	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220><22	3> 7280T sense primer	
<400>	27	
cccaggca	ct tgatgatact c	21
<210>	28	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220><22	3> 7280T antisense primer	
<400>	28	
cttgctttg	gg gtggagagtt	20
<210>	29	
<211>	27	
<212>	DNA	
<213>	Artificial Sequence	
<220><22	3> TSC-1 R22W-F primer	
<400>	29	
gtcacgtc	gt cccacacacc cagcatg	27
<210>	30	
<211>	27	
<212>	DNA	
<213>	Artificial Sequence	
<220><22	3> TSC-1 R22W-R primer	
<400>	30	
catectee	ot ototopoaco acotoac	2.7

<210> 31

```
<211>
        43
<212>
        DNA
<213>
        Artificial Sequence
<220><223>
              TSC-1 R204C-F primer
<400>
         31
                                                                           43
ctttcatact gtaatgagaa cacaaaaagg agacgaagtt gca
<210>
<211>
        43
<212>
        DNA
<213>
        Artificial Sequence
<220><223>
              TSC-1 R204C-R primer
<400>
tgcaacttcg tctccttttt gtgttctcat tacagtatga aag
                                                                           43
<210>
<211>
        33
<212>
        DNA
        Artificial Sequence
<213>
<220><223>
              TSC-2 V1547I-F primer
<400>
         33
                                                                           33
tctccaacat acaggatggc gatcttgtgg gtg
<210>
        34
<211>
        33
<212>
        DNA
<213>
        Artificial Sequence
<220><223>
              TSC-2 V1547I-R primer
<400>
        34
                                                                           33
cacccacaag atcgccatcc tgtatgttgg aga
<210>
<211>
        35
<212>
        DNA
<213>
        Artificial Sequence
<220><223>
              AKT3 R247H-F primer
```

<400>

caccat	agaa acgtgtgtgg teeteagaga acace	35
<210>	36	
<211>	35	
<212>	DNA	
<213>	Artificial Sequence	
<220><	2223> AKT3 R247H-R primer	
<400>	36	
ggtgtt	ctct gaggaccaca cacgtttcta tggtg	35
<210>	37	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220><	2223> DNA sequence corresponding to TSC1 targetting sgRNA	
<400>	37	
tgctgg	gactc ctccacactg	20
<210>	38	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220><	2223> DNA sequence corresponding to TSC2 targetting sgRNA	
<400>	38	

aatcccaggt gtgcagaagg