

(19) 대한민국특허청(KR)

(12) 등록특허공보(B1)

(51) 국제특허분류(Int. Cl.)

C12N 7/00 (2006.01) *A01N 63/00* (2020.01) *A23L 33/10* (2016.01) *A61K 35/76* (2015.01)

(52) CPC특허분류

C12N 7/00 (2013.01) A01N 63/00 (2013.01)

(21) 출원번호10-2017-0077539

(22) 출원일자2017년06월19일

심사청구일자 **2017년06월19일**

(65) 공개번호10-2018-0137814(43) 공개일자2018년12월28일

(56) 선행기술조사문헌

JP2015523850 A

KR1020040111357 A

W02017081709 A1

Current Microbiology. volume 59, pages 274-281(2009).

(45) 공고일자 2021년06월18일

(11) 등록번호 10-2264514

(24) 등록일자 2021년06월08일

(73) 특허권자

주식회사 마이크로바이오틱스

서울특별시 서대문구 연세로 50-1, 221호(신촌동, 연세대학교의과대학 임상의학연구센터)

(72) 발명자

용동은

서울특별시 서대문구 연세로 50-1(신촌동)

전종수

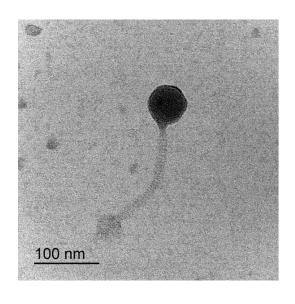
서울특별시 서대문구 연세로 50-1(신촌동)

(74) 대리인

파도특허법인(유한)

전체 청구항 수 : 총 4 항

심사관 : 김정희


(54) 발명의 명칭 항생제 내성을 갖는 클렙시엘라(Klebsiella)속 균을 용균하는 박테리오파지

(57) 요 약

본 발명은 항생제에 대한 내성을 갖는 클렙시엘라(*Klebsiella*)속 균을 용균시키는 박테리오파지에 관한 것으로, YMC15/11/N137_KPN_BP 박테리오파지 (기탁번호: [KCTC18573P])를 제공한다.

본 발명에서 제공하는 항생제 내성 클렙시엘라속 균에 대하여 특이적 사멸능을 가지므로, 항생제 내성 클렙시엘라속 균에 의해 유발되는 질환의 예방 및 치료 목적으로 활용할 수 있다.

대 표 도 - 도1

(52) CPC특허분류

A23L 33/127 (2016.08)

A61K 35/76 (2013.01)

A23V 2002/00 (2013.01)

A23V 2200/30 (2013.01)

C12N 2795/00021 (2013.01)

C12N 2795/00032 (2013.01)

이 발명을 지원한 국가연구개발사업

과제고유번호 2014M3A6B2060509 부처명 미래창조과학부 과제관리(전문)기관명 한국연구재단

연구사업명 글로벌프론티어연구개발사업

연구과제명 감염질환 진단검사 평가를 위한 기반 시스템 구축

기 여 율 1/1

과제수행기관명 연세대학교 산학협력단 연구기간 2014.09.01 ~ 2022.08.31

명 세 서

청구범위

청구항 1

카바페넴(Carbapenem) 내성 클렙시엘라 뉴모니아(Klebsiella pneumoniae)에 대하여 특이적인 세포 사멸능을 갖고, 명칭은 YMC15/11/N137_KPN_BP이고, 기탁번호는 [KCTC18573P]인, 박테리오파지로,

상기 카바페넴은 앰피실린(Ampicillin), 엠피실린/설벡탐(Ampicillin/Sulbactam), 아즈트레오남(Aztreonam), 세즈타지딤(Ceftazidime), 세파졸린(Cefazolin), 에르타페넴(Ertapenem), 세페핌(Cefepime), 세폭시틴(Cefoxitin), 세포탁심(Cefotaxime), 젠타마이신(Gentamicine), 레보플록세신(Levoflocacin), 메로페넴(Meropenem), 피페라실린/타조박탐(Piperacillin/Tazobactam), 코트리목사(Cotrimoxa), 및 티게틸린(Tigecyline)으로 구성된 군으로부터 선택되는 1종 이상인, 박테리오파지.

청구항 2

삭제

청구항 3

제 1항에 있어서,

상기 박테리오파지는 시포비리데(Siphoviridae)에 속하는, 박테리오파지.

청구항 4

삭제

청구항 5

삭제

청구항 6

삭제

청구항 7

삭제

청구항 8

삭제

청구항 9

삭제

청구항 10

삭제

청구항 11

삭제

청구항 12

삭제

청구항 13

삭제

청구항 14

제 1항 또는 제 3항의 박테리오파지를 유효성분으로 포함하는 항생제.

청구항 15

제 1항 또는 제 3항의 박테리오파지를 유효성분으로 포함하는 소독제.

발명의 설명

기 술 분 야

[0001] 본 발명은 항생제에 대한 내성을 갖는 클렙시엘라(Klebsiella)속 균을 용균시키는 박테리오파지에 관한 것이다.

배경기술

- [0002] 클렙시엘라(Klebsiella)속 균에 해당하는 클렙시엘라 뉴모니아(Klebsiella pneumoniae)는 그람 음성의 피막을 가진 혐기성 세균으로 입, 피부, 장 등의 정상세균총에서 발견된다. 병원 밖 클렙시엘라 세균에 의해 유발되는 가장 흔한 감염질환은 페렴이 있으며, 전형적으로 기관지폐렴 및 기관지염의 형태로 나타난다. 클렙시엘라 뉴모니아는 감염 및 출혈을 통해 인간 폐를 파괴할 수 있고, 때로는 점액성 객담을 생성하기도 한다. 상기 세균은 전형적으로 구강 인두에 대량으로 서식하는 미생물 흡입에 의해 기도로 들어가 감염을 유발하는 것으로 알려져 있다.
- [0003] 상기 클립시엘라속 균의 감염은 대부분 면역력이 약한 사람에게서 두드러지게 나타나며, 항균 치료를 수행하더라도 약 50%의 높은 사망률을 나타내고 있다. 특히, 클립시엘라 뉴모니아는 구강 등의 흡입 이외에도 비뇨기관, 쓸개관 및 수술에 의한 상처 부위에서도 감염을 유발할 수 있다. 최근, 클립시엘라 뉴모니아가 병원 내 감염에 있어서 매우 중요한 병원균으로 인식되고 있다.
- [0004] 항생제 오남용 및 이로 인한 내성균 출현 등으로 대표되는 기존 합성 항생제의 문제점이 세계적으로 크게 이슈화되어 있는 상황에서 이에 대한 해결책을 제시해 줄 수 있는 대상으로 주목을 받고 있는 것이 바로 박테리오파지(Bacteriophage) 및 박테리오파지 유래의 리신(Lysin) 단백질이다. 박테리오파지 및 리신 단백질은 기존 항생물질과는 완전히 다른 계열이라 할 수 있으며 이에 따라 전혀 다른 항균(antibacterial) 작용 기작(mode of action)을 갖고 있다. 따라서 기존 항생제의 사용에서 나타나던 여러 부작용(side effect)이나 문제점을 개선할수 있을 것으로 기대를 모으고 있다.
- [0005] 박테리오파지는 박테리아를 감염시킬 수 있으며 보통 파지(phage)라고 줄여서 부르기도 한다. 박테리오파지는 핵산으로 이루어진 유전물질 중심부를 단백질 외피가 싸고 있는 단순한 구조의 유기체이며, 핵산은 단일 사슬이 거나 이중 사슬인 DNA 또는 RNA로 되어있다. 박테리오파지는 생존에 숙주(host)가 반드시 필요하며, 모든 박테 리아에는 특정 박테리오파지가 존재한다고 알려져 있다. 박테리오파지는 박테리아의 세포벽(cell wall)의 펩티 도글리칸(peptidoglycan) 층(laver)을 공격하여 세포벽을 파괴핚으로써 박테리아를 사멸시킬 수 있다. 박테리오 파지는 1915년 영국의 세균학자 Twort와 1917년 프랑스의 dHerelle에 의해 독립적으로 규명되었으며 세균을 잡 아먹는다는 뜻에서 박테리오파지라고 명명되었다. 박테리오파지의 항박테리아 활성(antibacterial activity) 때 문에 발견 직후부터 인체와 동물의 질병 치료에 사용되었다. 그러나 Flemming에 의해 페니실린이 발견된 이후, 계속된 다양한 항생제의 등장 및 보급화로 인하여 서구에서는 관심이 점차 줄어들게 되었다. 그러나 러시아와 독일 등의 동구권 나라들은 박테리오파지 연구를 계속 해왔으며 관련하여 다수의 제품들이 산업화된 바도 있다. 하지만, 2000년대에 이르러 항생제 내성균 문제가 부각되면서 서구에서도 다시 박테리오파지에 대하여 관심을 갖게 되었으며 그 후 약 7~8년이 흐른 최근, 산업화 사례들이 속속 보고되고 있다. 즉, 박테리오파지가 세계적 으로 새롭게 재조명되기 시작한 시기는 2000년대 초반으로, 실질적 산업화 노력이 약 7 ~ 8 여년 정도 진행된 신규한 분야로서, 생명공학기술의 발전과 맞물려 최근 매우 활발히 관련 개발이 진행되고 있는 분야라 할 수 있 다.
- [0006] 박테리오파지의 가장 큰 특징으로는, 감염성 박테리아 속에 침투한 다음 박테리아의 세포벽을 파괴하여 박테리아의 사멸을 유도한다는 것이며, 이러한 박테리오파지에 의한 세포 사멸의 기작은 세균의 세포벽 합성을 방해하

는 방식의 기존 합성 항생제의 기작과는 완전히 다르다. 따라서 기존 합성 항생제에 대한 감수성에 관계없이 자신의 항균 활성을 발휘할 수 있다. 이로 인하여 특히 기존 항생제에 대하여 이미 내성을 획득한 내성균에 대해서도 항균 효과가 있다. 또한, 박테리아에 대해서는 매우 특이적인 항균 활성을 가지고 있기 때문에 인간을 포함한 동물을 구성하는 세포인 진핵세포(eukaryotic cell)에는 영향을 주지 않는다는 장점을 갖고 있다.

발명의 내용

해결하려는 과제

- [0007] 본 발명의 일 목적은 항생제 내성 클렙시엘라속 균에 대하여 특이적인 감염 및 세포 사멸 능력을 갖는 신규한 박테리오파지를 제공하는 것이다.
- [0008] 본 발명의 다른 목적은 클렙시엘라속 균에 대하여 특이적인 세포 사멸 능력을 갖는 신규한 박테리오파지를 유효 성분으로 포함하여, 상기 클렙시엘라속 균에 의해 유발되는 질환의 예방 또는 치료용 약학 조성물 및 개선용 식 품 조성물을 제공하는 것이다.
- [0009] 본 발명의 또 다른 목적은 본 발명에 따른 상기 박테리오파지를 포함하는 항생제 및 소독제를 제공하는 것이다.
- [0010] 그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업계에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.

과제의 해결 수단

- [0011] 본 발명의 발명자들은 항생제 내성 세균 감염증 치료의 대안 물질로 기존의 화학 용법 제제를 보완할 수 있는 박테리오파지를 검토하던 중 항생제 내성 클렙시엘라(Klebsiella)속 균을 선택적으로 사멸시킬 수 있는 박테리오파지를 분리하고, 분리된 박테리오파지의 형태적 및 유전적 특성을 분석하여 이를 타 박테리오파지와 구별하여 특정 지을 수 있는 유전체(genome)의 유전자 서열을 제공하며, 더 나아가 항생제 내성 클렙시엘라속 균에 특이적 사멸능을 갖는 분리된 박테리오파지를 이용하여 상기 항생제 내성 클렙시엘라속 균에 의해 유발되는 질환의 예방 및 치료 목적으로 이용함으로써 본 발명을 완성하였다.
- [0012] 구체적으로, 본 발명자들은 항생제 내성 클렙시엘라속 균을 선택적으로 사멸시키기 위해 예의 노력한 결과, 병원체로부터 카바페넴 내성을 갖는 클랩시엘라 뉴모니아(Klebsiella pneumoniae)를 분리하였고, 상기 카바페넴 내성 클랩시엘라 뉴모니아를 특이적으로 사멸시킬 수 있는 신규한 박테리오파지를 선별하여 이를 'YMC15/11/N137_KPN_BP'로 명명하였다. 이렇게 선별된 박테리오파지 YMC15/11/N137_KPN_BP를 2017년 5월 11일 자로 한국생명공학연구원 미생물자원센터 (기탁번호: [KCTC18573P])에 기탁하였다.
- [0013] 본 발명의 일 구현 예에 따르면 항생제 내성 클렙시엘라(Klebsiella)속 균에 대하여 선택적 사멸능을 갖는 박테리오파지를 제공한다.
- [0014] 본 발명에서 상기 클렙시엘라(Klebsiella)속 균은 장내세균과의 한 속으로, 협막을 지니며 점액을 생산하고, 탄소원으로서 구연산염을 이용하는 균으로, 자연계에 널리 존재하며 사람의 호흡기, 장관 및 비뇨기에서 검출된다. 일반적으로 상기 균은 비병원성이지만 다양한 질병의 2차 감염과 폐렴 등의 질환의 원인이 될 수 있다.
- [0015] 본 발명에서, 상기 클렙시엘라속 균은 클렙시엘라 뉴모니아(Klebsiella pneumoniae), 클렙시엘라 옥시토카 (Klebsiella oxytoca), 클렙시엘라 플란티콜라(Klebsiella planticola) 및 클렙시엘라 테리게나(Klebsiella terrigena)로 구성된 군으로부터 선택되는 어느 1종 이상일 수 있으며, 바람직하게는 클렙시엘라 뉴모니아 (Klebsiella pneumoniae)일 수 있으나, 이에 제한되는 것은 아니다.
- [0016] 또한, 본 발명에서 상기 클렙시엘라 뉴모니아(Klebsiella pneumoniae)는 간균으로도 불리우며, 아종으로 뉴모니아(Pneumoniae), 아자니아(Azaenae) 및 리노스틸레로마티스(Rhinoscleromatis)가 존재하며, 상기 균은 급성폐렴, 취비증, 비경종증을 유발할 수 있다. 또한, 항생물질에 내성이 존재하고, 건조하지 않는 경우 실온에서 수개월 동안 생존할 수 있다.
- [0017] 본 발명에서 상기 "항생제 내성"은 특정 항생제에 내성을 보여 약효가 듣지 않는 것을 의미하며, 본 발명의 목적상 상기 항생제는 카바페넴(Carbapenem)의 구조를 갖는 항생제일 수 있다. 구체적으로, 아미카신(Amicacin), 앰피실린(Ampicillin), 엠피실린/설벡탐(Ampicillin/Sulbactam), 아즈트레오남(Aztreonam), 세즈타지딤 (Ceftazidime), 세파졸린(Cefazolin), 에르타페넴(Ertapenem), 세페핌(Cefepime), 세폭시틴(Cefoxitin), 세포

탁심(Cefotaxime), 젠타마이신(Gentamicine), 레보플록세신(Levoflocacin), 메로페넴(Meropenem), 피페라실린/타조박탐(Piperacillin/Tazobactam), 코트리목사(Cotrimoxa), 및 티게틸린(Tigecyline)으로 구성된 군으로부터 선택되는 1종 이상일 수 있으나, 이에 제한되는 것은 아니다. 본 발명의 목적상 상기 클렙시엘라 뉴모니아는 항생제 내성을 갖는 것일 수 있고, 상기 항생제 내성은 상기 카바페넴을 분해하여 효과의 발휘를 억제하는 카바페넴아제 효소(carbapenemase)를 생산함으로써 발생될 수 있다.

- [0018] 본 발명에서 상기 "박테리오파지"는 세균을 숙주세포로 하는 바이러스 일군의 총칭으로, 숙주에 감염된 후 증식하여 자손 파지를 방출하는 용균성을 갖는 회로 또는 숙주 염색체와 공존한 상태에서 숙주는 생존하고, 파지 DNA는 복제하는 회로를 갖는다.
- [0019] 삭제
- [0020] 또한, 본 발명에서 상기 박테리오파지는 시포비리데(siphoviridae)에 속하는 박테리오파지일 수 있다.
- [0021] 단, 본 발명에서 상기 "시포비리데(siphoviridae)"는 박테리오파지를 전자현미경을 통한 형태 관찰에 의해 분류 및 동정하는 방법에 의해 분류된 것으로, 수축성이 없는 수축성이 없는 긴 꼬리(a long non-contractile tail)를 갖는 복합형의 형태를 나타낸 것일 수 있다.
- [0023] 본 발명의 다른 구현 예에 따르면, 본 발명에 따른 박테리오파지 YMC15/11/N137_KPN_BP를 유효성분으로 포함하는 항생제 내성 클렙시엘라속 균 유발성 질환의 예방 또는 치료용 약학 조성물을 제공한다.
- [0024] 본 발명의 약학 조성물은 1×10^3 내지 1×10^{10} pfu/ml의 박테리오파지를 포함하며, 바람직하게는 1×10^6 내지 1×10^9 pfu/ml의 박테리오파지를 포함할 수 있다.
- [0025] 본 발명의 약학 조성물에 포함되는 박테리오파지 YMC15/11/N137_KPN_BP는 상술한 바와 같이, 항생제 내성 클렙시엘라속 균, 바람직하게는 카바페넴 내성 클렙시엘라속, 보다 바람직하게는 카바페넴 내성 클렙시엘라 뉴모니아를 특이적으로 사멸시킬 수 있는 용균능 및 흡착능이 존재하므로, 본 발명의 약학 조성물을 사용하는 경우 상기 항생제 내성 클렙시엘라속 균을 용균 및 사멸시켜 인체 내에서 상기 항생제 내성 클렙시엘라 속 균의 감염으로 인하여 유발되는 다양한 질환을 효과적으로 예방 또는 치료할 수 있다.
- [0026] 본 발명에서 상기 클렙시엘라속 균 유발성 질환은 패혈증, 폐렴 및 폐기종으로 이루어진 군에서 선택되는 어느하나일 수 있으나, 이에 제한되는 것은 아니다.
- [0027] 본 명세서에서 사용된 '치료'라는 용어는 (i) 클렙시엘라속 균 에 의해 유발된 질환의 예방; (ii) 클렙시엘라속 균 에 의해 유발된 질환의 경감을 의미한다.
- [0028] 본 발명에서 상기 약학 조성물은 캡슐, 정제, 과립, 주사제, 연고제, 분말 또는 음료 형태임을 특징으로 할 수 있으며, 상기 약학 조성물은 인간을 대상으로 하는 것을 특징으로 할 수 있다.
- [0029] 본 발명에서 상기 약학 조성물은 이들로 한정되는 것은 아니지만, 각각 통상의 방법에 따라 산제, 과립제, 캡슐, 정제, 수성 현탁액 등의 경구형 제형, 외용제, 좌제 및 멸균 주사 용액의 형태로 제형화하여 사용될 수 있다. 본 발명의 약학 조성물은 약학적으로 허용 가능한 담체를 포함할 수 있다. 약학적으로 허용되는 담체는 경구 투여 시에는 결합제, 활탁제, 붕해제, 부형제, 가용화제, 분산제, 안정화제, 현탁화제, 색소, 향료 등을 사용할 수 있으며, 주사제의 경우에는 완충제, 보존제, 무통화제, 가용화제, 등장제, 안정화제 등을 혼합하여 사용할 수 있으며, 국소투여용의 경우에는 기제, 부형제, 윤활제, 보존제 등을 사용할 수 있다. 본 발명의 약학 조성물의 제형은 상술한 바와 같은 약제학적으로 허용되는 담체와 혼합하여 다양하게 제조될 수 있다. 예를 들어, 경구 투여시에는 정제, 트로키, 캡슐, 엘릭서(elixir), 서스펜션, 시럽, 웨이퍼 등의 형태로 제조할 수 있으며, 주사제의 경우에는 단위 투약 앰플 또는 다수회 투약 형태로 제조할 수 있다. 기타, 용액, 현탁액, 정제, 캡슐, 서방형 제제 등으로 제형화할 수 있다.
- [0030] 한편, 제제화에 적합한 담체, 부형제 및 희석제의 예로는, 락토즈, 텍스트로즈, 수크로즈, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말디톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로즈, 폴리비닐피롤리돈, 물, 메틸하이드록시벤조에이트, 프로필하이드록시벤조에이트, 탈크, 마그네슘 스테아레이트 또는 광물유 등이 사용될 수 있다. 또한, 충진제, 항 응집제, 윤활제, 습윤제, 향료, 유화제, 방부제 등을 추가로 포함할 수 있다.

- [0031] 본 발명에 상기 약학 조성물의 투여 경로는 이들로 한정되는 것은 아니지만 구강, 정맥내, 근육내, 동맥내, 골수내, 경막내, 심장내, 경피, 피하, 복강내, 비강내, 장관, 국소, 설하 또는 직장이 포함된다. 경구 또는 비경구 투하가 바람직하다.
- [0032] 본 발명에서 상기 "비경구"란, 피하, 피내, 정맥내, 근육내, 관절내, 활액낭내, 흉골내, 경막내, 병소내 및 두 개골내 주사 또는 주입기술을 포함한다. 본 발명의 약학 조성물은 또한 직장 투여를 위한 좌제의 형태로 투여될 수 있다.
- [0033] 본 발명의 상기 약학 조성물은 사용된 특정 화합물의 활성, 연령, 체중, 일반적인 건강, 성별, 정식, 투여 시간, 투여 경로, 배출율, 약물 배합 및 예방 또는 치료될 특정 질환의 중증을 포함한 여러 요인에 따라 다양하게 변할 수 있고, 상기 약학 조성물의 투여량은 환자의 상태, 체중, 질병의 정도, 약물 형태, 투여 경로 및 기간에 따라 다르지만 당업자에 의해 적절하게 선택될 수 있고, 1일 0.0001 내지 50mg/kg 또는 0.001 내지 50mg/kg으로 투여할 수 있다. 투여는 하루에 한번 투여할 수도 있고, 수회 나누어 투여할 수도 있다. 상기 투여량은 어떠한 면으로든 본 발명의 범위를 한정하는 것은 아니다. 본 발명에 따른 의약 조성물은 환제, 당의정, 캡슐, 액제, 겔, 시럽, 슬러리, 현탁제로 제형될 수 있다.
- [0035] 본 발명의 또 다른 구현 예에 따르면, 본 발명에 따른 박테리오파지 YMC15/11/N137_KPN_BP를 유효성분으로 포함 하는 항생제 내성 클렙시엘라속 균 유발성 질환의 예방 또는 개선용 식품 조성물을 제공한다.
- [0036] 본 발명의 식품 조성물은 1×10^3 내지 1×10^{10} pfu/ml의 박테리오파지를 포함하며, 바람직하게는 1×10^6 내지 1×10^9 pfu/ml의 박테리오파지를 포함할 수 있다.
- [0037] 본 발명의 식품 조성물에 포함되는 박테리오파지 YMC15/11/N137_KPN_BP는 상술한 바와 같이, 항생제 내성 클렙시엘라속 균, 바람직하게는 카바페넴 내성 클렙시엘라속, 보다 바람직하게는 카바페넴 내성 클렙시엘라 뉴모니아를 특이적으로 사멸시킬 수 있는 용균능 및 흡착능이 존재하므로, 본 발명의 약학 조성물을 사용하는 경우 상기 항생제 내성 클렙시엘라속 균을 용균 및 사멸시켜 인체 내에서 상기 항생제 내성 클렙시엘라 속 균의 감염으로 인하여 유발되는 다양한 질환을 효과적으로 예방 또는 개선할 수 있다.
- [0038] 본 발명에서 상기 클렙시엘라속 균 유발성 질환은 패혈증, 폐렴 및 폐기종으로 이루어진 군에서 선택되는 어느 하나인 것일 수 있으나, 이에 제한되는 것은 아니다.
- [0039] 한편, 본 발명에서, "개선"은 본 발명의 식품 조성물을 이용하여 클렙시엘라속 균의 감염으로 인해 발생한 증상이 호전 또는 이롭게 변경되는 모든 행위라면 제한없이 포함할 수 있다.
- [0040] 본 발명의 상기 박테리오파지를 유효성분으로 포함하는 식품 조성물은 각종 식품류, 예를 들어, 음료, 껌, 차, 비타민 복합제, 분말, 과립, 정제, 캡슐, 과자, 떡, 빵 등의 형태로 제조될 수 있다.
- [0041] 본 발명에서 상기 박테리오파지가 식품 조성물에 포함될 때 그 양은 전체 중량의 0.1 내지 50%의 비율로 첨가할 수 있으나, 이에 제한되는 것은 아니다.
- [0042] 본 발명에서 상기 식품 조성물이 음료 형태로 제조되는 경우 지시된 비율로 상기 식품 조성물을 포함하는 것 외에 특별한 제한점은 없으며, 통상의 음료와 같이 다양한 향미제 또는 천연 탄수화물 등을 추가 성분으로서 함유할 수 있다. 구체적으로, 천연 탄수화물로서 포도당 등의 모노사카라이드, 과당 등의 디사카라이드, 슈크로스등의 및 폴리사카라이드, 덱스트린, 시클로덱스트린 등과 같은 통상적인 당 및 자일리톨, 소르비톨, 에리트리톨등의 당알콜 등을 포함할 수 있다. 상기 향미제로서는 천연 향미제(타우마틴, 스테비아 추출물(예를 들어 레바우디오시드 A, 글리시르히진 등) 및 합성 향미제(사카린, 아스파르탐 등) 등일 수 있다.
- [0043] 본 발명에서, 그 외 본 발명의 상기 식품 조성물은 여러 가지 영양제, 비타민, 광물(전해질), 합성 풍미제 및 천연 풍미제 등의 풍미제, 착색제, 펙트산 및 그의 염, 알긴산 및 그의 염, 유기산, 보호성 콜로이드 증점제, pH 조절제, 안정화제, 방부제, 글리세린, 알콜, 탄산 음료에 사용되는 탄산화제 등을 포함할 수 있다.
- [0044] 본 발명에서 상기 성분은 독립적 또는 조합하여 사용할 수 있다. 상기 첨가제의 비율은 본 발명의 핵심적인 요소에 해당하지 아니하지만, 본 발명의 식품 조성물 100 중량부 당 0.1 내지 약 50 중량부의 범위에서 선택될 수있으나, 이에 제한되는 것은 아니다.
- [0046] 본 발명의 또 다른 구현 예는 본 발명에 따른 박테리오파지 YMC15/11/N137_KPN_BP를 유효성분으로 포함하는 항생제를 제공한다.

- [0047] 본 발명에서 상기 항생제는, 대부분의 다른 항생 물질들은 대상체인 균주의 내성이 증가함에 따라 갈수록 사용 범위가 줄어들 수 밖에 없는데에 반하여, 본 발명의 상기 항생제는 상기와 같은 문제점과 무관하게 사용될 수 있으므로 항생제로 사용될 수 있는 수명이 길어질 수 있다.
- [0048] 단, 본 발명에서 상기 "항생제"는 방부제, 살균제 및 항균제를 총칭하는 의미를 나타낸다.
- [0050] 본 발명의 또 다른 구현 예는 본 발명에 따른 박테리오파지 YMC15/11/N137_KPN_BP를 유효성분으로 포함하는 소독제를 제공한다.
- [0051] 본 발명에서 상기 소독제는 항생제 내성 클렙시엘라속 균에 대하여 특이적 사멸능을 갖는 박테리오파지를 유효성분으로 하고 있으므로, 병원에서의 감염을 방지하기 위한 병원 및 보건용 도구 등의 소독제로 유용하게 사용될 수 있고, 일반 생활 소독제, 식품 및 조리 장소 및 설비의 소독제, 축산 산업의 축사 소독제로 유용하게 사용될 수 있다.

발명의 효과

[0052] 본 발명에 따른 신규한 박테리오파지는 항생제 내성 클렙시엘라속 균에 대하여 특이적 사멸능을 가지므로, 항생 제 내성 클렙시엘라속 균에 의해 유발되는 질환의 예방 및 치료 목적으로 활용할 수 있다.

도면의 간단한 설명

[0053] 도 1은 본 발명의 일 실시예에 따른 박테리오파지의 전자 현미경 촬영 사진을 나타낸 것이다.

도 2는 본 발명의 일 실시예에 따른 항생제 내성을 갖는 클렙시엘라속 균에 대한 용균성 박테리오파지의 흡창능을 그래프로 나타낸 것이다.

도 3은 본 발명의 일 실시예에 따른 항생제 내성을 갖는 클렙시엘라속 균에 대한 용균성 박테리오파지의 1단 증식 곡선을 나타낸 것이다.

도 4는 본 발명의 일 실시예에 따른 생체 외에서 박테리오파지의 항생제 내성을 갖는 클렙시엘라속 균에 대한 용균능을 그래프로 나타낸 것이다.

도 5는 본 발명의 일 실시예에 따른 항생제 내성을 갖는 클렙시엘라속 균에 대한 용균성 박테리오파지의 pH 안 정성을 그래프로 나타낸 것이다.

도 6은 본 발명의 일 실시예에 따른 항생제 내성을 갖는 클립시엘라속 균에 대한 용균성 박테리오파지의 온도 안정성을 그래프로 나타낸 것이다.

도 7은 본 발명의 일 실시예에 따른 항생제 내성을 갖는 클렙시엘라속 균에 대한 용균성 박테리오파지의 전체 유전체 서열 분석 결과를 나타낸 것이다.

발명을 실시하기 위한 구체적인 내용

[0054] 이하, 본 발명을 하기의 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의해 한정되는 것은 아니다.

[0056] 실시예

[0058] [실시예 1] 임상검체 분리 및 항생제 내성 균주 선별

[0059] 세브란스 병원 환자들로부터 환자의 분변 내 클렙시엘라 뉴모니아(Klebsiella pneumoniae) 균을 배양하여 분리하였다. 그 뒤, 감수성 결과는 Clinical and Laboratory Standards Institute (CLSI, 2009)를 기준으로 판독하였다. 감수성 시험은 뮬러-힌튼(Mueller-Hinton) 아가를 사용하여 외기 37℃에서 하룻밤 동안 배양하는 CLSI 디스크 확산 시험방법을 사용하였다. 클렙시엘라 뉴모니아 균에 대한 시험 항생제는 아미카신(Amicacin), 앰피실린(Ampicillin), 엠피실린/설벡탐(Ampicillin/Sulbactam), 아즈트레오남(Aztreonam), 세즈타지딤(Ceftazidime), 세파졸린(Cefazolin), 에르타페넴(Ertapenem), 세페핌(Cefepime), 세폭시틴(Cefoxitin), 세포탁심(Cefotaxime), 젠타마이신(Gentamicine), 레보플록사신(Levofloxacin), 메로페넴(Meropenem), 피페라실린/타조박탐(Piperacillin/Tazobactam), 코트리목사(Cotrimoxa), 및 티게틸린(Tigecyline)을 사용하였다. 수집된 클렙시엘라 뉴모니아(Klebsiella pneumoniae) 53개 주의 항생제 내성 프로파일은 하기 표 1에 나타내었다. 단,하기 표 1에서 S, I 및 R은 항균제에 대한 감수성을 평가한 결과로, 'S'는 민감(Susceptible), 'I'는 중간

(Intermediate), 'R'은 내성(Resistant)를 의미한다.

丑 1

[0061]

숙주 균주	아 미 카 균신	엠 피 실린	엠피 실린/ 설벡탐	아즈 트레 오남	세즈 타지 딤	세 파 졸린	에르 타페 넴	세페핌	세 폭 시틴	세 포 탁심	젠타 마이 신	레보 플록 사신	메 로 페넴	피폐라 실린/타 조박탐	코트 리목 사졸	티 게 틸린
YMC15 /11/P 488	≤2 (S)	≥32 (R)														
YMC15 /11/P 546	≤2 (S)	≥32 (R)	≥32 (R)	≥64 (R)	≥64 (R)	≥64 (R)	≥8 (R)	≥6 4 (R)	≥64 (R)	≥64 (R)	≥16 (R)	≥8 (R)	≥16 (R)	≥128 (R)	≥320 (R)	≥8 (R)
YMC15 /09/U 2874	=2 (S)	≥32 (R)	≥32 (R)	≥64 (R)	≥64 (R)	≥64 (R)	≥8 (R)	≥6 4 (R)	≥64 (R)	≥64 (R)	≤1 (S)	≥8 (R)	≥16 (R)	≥16 (R)	40 (S)	≥8 (R)
YMC15 /11/N 45							≥8 (R)						≥16 (R)			
YMC15 /11/P 756	≤2 (S)	≥32 (R)	≥32 (R)	≥64 (R)	≥64 (R)	≥64	≥8 (R)	≥6 4 (R)	≥64 (R)	≥64 (R)	≤1 (S)	≥8 (R)	≥16 (R)	≥128 (R)	≤40 (S)	≥8 (R)
YMC15 /11/N 55							≥8 (R)						≥16 (R)			
YMC15 /11/T 741	≤2 (S)	≥32 (R)	≥32 (R)	≥64 (R)	≥64 (R)	≥64 (R)	≥8 (R)	≥6 4 (R)	≥64 (R)	≥64 (R)	≤1 (S)	≥8 (R)	≥16 (R)	≥128 (R)	≤40 (S)	≥8 (R)
YMC15 /11/U 4318	≤2 (S)	≥32 (R)	≥32 (R)	≥64 (R)	≥64 (R)	≥64	≥8 (R)	≥6 4 (R)	≥64 (R)	≥64 (R)	≤1 (S)	≥8 (R)	≥16 (R)	≥128 (R)	≤40 (S)	≥8 (R)
YMC15 /11/P 860							≥8 (R)						≥16 (R)			
YMC15 /11/C 1052							≥8 (R)						≥16 (R)			
YMC15 /10/N 12							≥8 (R)						≥16 (R)			
YMC15 /10/U 1383	≤2 (S)	≥32 (R)	≥32 (R)	≥64 (R)	≥64 (R)	≥64	≥8 (R)	≥6 4 (R)	≥64 (R)	≥64 (R)	≤1 (S)	≥8 (R)	≥16 (R)	≥128 (R)	≤40 (S)	≥8 (R)
YMC15 /10/P 776	≤2 (S)	≥32 (R)	≥32 (R)	≥64 (R)	≥64 (R)	≥64	≥8 (R)	≥6 4 (R)	≥64 (R)	≥64 (R)	≥16 (R)	≥8 (R)	≥16 (R)	≥128 (R)	≥320 (R)	≥8 (R)
YMC15 /10/N 150													≥16 (R)			
YMC15 /11/N 1073													≥16 (R)			
YMC15 /11/G 57	≤2 (S)	≥32 (R)	≥32 (R)	≥64 (R)	≥64 (R)	≥64	25 (S)	2 (S)	≥64 (R)	≥64 (R)	≤1 (S)	4 (I)	29 (S)	≥128 (R)	≤20 (S)	≤0. 5 (S)
YMC15 /11/B 4059	≤2 (S)	≥32 (R)	≥32 (R)	≥64 (R)	≥64 (R)	≥64	≥8 (R)	≥6 4 (R)	≥64 (R)	≥64 (R)	≥16 (R)	≥8 (R)	≥16 (R)	≥128 (R)	≥320 (R)	≥8 (R)
YMC15 /11/U 2284	≤2 (S)	≥32 (R)	≥32 (R)	≥64 (R)	≥64 (R)	≥64	≥8 (R)	≥6 4 (R)	≥64 (R)	≥64 (R)	≥16 (R)	≥8 (R)	≥16 (R)	≥128 (R)	≥320 (R)	≥8 (R)
YMC15 /11/N 45							≥8 (R)				_		≥16 (R)		_	

YMC15 /11/N							≥8 (R)						≥16 (R)			
53 YMC15 /11/N	≤2 (S)	≥32 (R)	≥32 (R)	≥64 (R)	≥64 (R)	≥64	≥8 (R)	≥6 4	≥64 (R)	≥64 (R)	≥16 (R)	≥8 (R)	≥16 (R)	≥128 (R)	≥320 (R)	≥8 (R)
54 YMC15 /11/N 96							≥8 (R)	(R)					≥16 (R)			
YMC15 /11/N 98							≥8 (R)						≥16 (R)			
YMC15 /11/N 101							≥8 (R)						≥16 (R)			
YMC15 /11/N 107							≥8 (R)						≥16 (R)			
YMC15 /11/N 115							≥8 (R)						≥16 (R)			
YMC15 /11/N 137	=2 (S)	≥32 (R)	≥32 (R)	≥64 (R)	≥64 (R)	≥64	≥8 (R)	≥6 4 (R)	≥64 (R)	≥64 (R)	≤1 (S)	≥8 (R)	≥16 (R)	≥128 (R)	≤40 (S)	≥8 (R)
YMC15 /11/R 3218	≤2 (S)	≥32 (R)	≥32 (R)	≥64 (R)	≥64 (R)	≥64	≥8 (R)	≥6 4 (R)	≥64 (R)	≥64 (R)	≥16 (R)	≥8 (R)	≥16 (R)	≥128 (R)	≥320 (R)	≥8 (R)
YMC15 /11/N 154							≥8 (R)	(11)					≥16 (R)			
YMC15 /11/R 3705	≤2 (S)	≥32 (R)	≥32 (R)	≥64 (R)	≥64 (R)	≥64	≥8 (R)	≥6 4 (R)	≥64 (R)	≥64 (R)	≥16 (R)	≥8 (R)	≥16 (R)	≥128 (R)	≥320 (R)	≥8 (R)
YMC15 /11/G 223	≤2 (S)	≥32 (R)	≥32 (R)	≥64 (R)	≥64 (R)	≥64	≥8 (R)	≥6 4 (R)	≥64 (R)	≥64 (R)	≥16 (R)	≥8 (R)	≥16 (R)	≥128 (R)	≥320 (R)	≥8 (R)
YMC15 /12/P 746	≤2 (S)	≥32 (R)	≥32 (R)	≥64 (R)	≥64 (R)	≥64	≥8 (R)	≥6 4 (R)	≥64 (R)	≥64 (R)	≤1 (S)	≥8 (R)	≥16 (R)	≥128 (R)	≤40 (S)	≥8 (R)
YMC15 /12/C 910							≥8 (R)						≥16 (R)			
YMC16 /01/R 859	≤2 (S)	≥32 (R)	≥32 (R)	≥64 (R)	≥64 (R)	≥64	≥8 (R)	≥6 4 (R)	≥64 (R)	≥64 (R)	≥16 (R)	≥8 (R)	≥16 (R)	≥128 (R)	≥320 (R)	≥8 (R)
YMC16 /01/N 136							≥8 (R)						≥16 (R)			
YMC16 /01/N 133	≤2 (S)						≥8 (R)						≥16 (R)			
YMC16 /01/N 141							≥8 (R)						≥16 (R)			
YMC16 /01/N 164							≥8 (R)						≥16 (R)			
YMC16 /01/N 233							≥8 (R)						≥16 (R)			
YMC16 /01/N 359							≥8 (R)						≥16 (R)			
YMC16 /01/R 3917							≥8 (R)						≥16 (R)			

YMC16 \$\leq 2\$ \$\leq 32\$ \$\leq 64\$ \$\l
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
\(\begin{array}{c c c c c c c c c c c c c c c c c c c
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
YMC16 /02/N 11 ≥8 (R) ≥16 (R)
/02/N 11 (R)
/02/N 11 (R)
11
VMC1C
1 M L D I I I I I I I I I I I I I I I I I I
/02/N
162
YMC16 ≥8 ≥16
$ 1 \times 10 $ $ 2 \times 10 $ $ 2$
394
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
393
YMC16 ≥8 ≥16 (P)
/02/N (R) (R)
499
YMC16
/02/N (R) (R)
726
$ \text{YMC}16 $ $ \geq 8 $ $ \geq 16 $
/03/N
942
YMC16 ≤ 2 ≥ 64 ≥ 64 ≥ 8 ≥ 3 8 ≥ 8 ≥ 16 ≥ 128
/04/R (S) (R) (R) (R) (I) (R) (R) (R)
1602 (R)
YMC16 ≥8 ≥16
1.05
235
YMC16 ≥8 ≥16
THE TO
151

[0063] 상기 표 1에서 보는 바와 같이, 수집된 클렙시엘라 뉴모니아(Klebsiella pneumoniae) 53개 균주는 다양한 카바 페넴계 항생제에 대하여 내성을 가지며, 특히 클렙시엘라 뉴모니아 YMC15/11/N137는 이후 PCR을 수행한 결과 bla_{KPC} 유전자를 갖는 다재내성 균주임을 알 수 있었다.

[실시예 2] 박테리오파지 검체 수집

[0066] 2-1. 파지 은행 구축을 위한 검체 수집

[0065]

[0067] 세브란스 병원의 하수 처리시설에서 최초 침전지 거친 후 부유물질 및 침사물이 제거된 원수를 확보하였다. 이는 화학 처리 시설 전 단계의 하수로 제한하였다. 수집한 시료에 1L 당 염화나트륨 58g을 첨가한 후 10,000g에서 10분간 원심 분리하여 220nm 밀리포어 필터로 여과하였다. 얻어진 여과액에 폴리에틸렌글리콜(PEG, 분자량 8000)을 10% W/V으로 첨가하고 4에서 12시간 동안 냉장 보관하였다. 12시간 냉장 보관된 여과액을 12,000g에서 20분간 원심 분리하여 침전물을 파지 희석 완충액 (SM 완충액)에 재부유한 뒤, 동일한 양의 클로로포름을 첨가하여 냉동 보관하였다. 이를 3회 반복하여 300mL의 박테리오파지 부유액을 채취하였다.

[0069] 2-2 용균성 파지 선별 및 용균역가 측정

[0070] 용균성 파지의 분리 정제는 스팟 테스트(Spot Test)법 (Mazzocco A et al. In Bacteriophages, Clokie and Kropinski AM, eds. Humana Press. 2009)으로 실행하였다. 확보된 균주를 맥콘키 한천배지에서 접종 후 외기 35에서 하룻밤 동안 배양하였다. 배양 후, 투명한 플라크 형성을 보고 파지에 감수성인 균주를 선별하였다. 감수성인 균주를 맥콘키 한천 배지에 접종하여 35에서 12시간 동안 배양하였다. 살린 1ml 튜브에 McFarland 0.5 탁도로 각 균주의 현탁액 제조하고 H 탑 아가 (3 ml), 감수성 박테리아 100ul 및 파지 용액 (각각 1ul, 10ul 및 50ul)을 섞어 LB 아가에 도포한 후, 35에서 12시간 동안 배양하였다. 플라크 관찰한 후에 파스퇴르 파이펫으로 플라크를 채취하여 SM 완충 용액에 희석하고, 다시 감수성인 균주 현탁액을 이용하여 3회 반복 정제하였다. 이

렇게 얻어진 순수한 박테리오파지는 SM 완충 용액에 희석하고 다시 감수성인 균주 현탁액을 이용하여 3회 반복 정제하였다. 이렇게 얻어진 순수한 박테리오파지는 SM 완충 용액에 희석하여 보관하였다.

- [0071] 실시예 1에서 확인한 항생제 내성 클렙시엘라 뉴모니아(Klebsiella pneumoniae) 53개 균주 각각을 맥콘키 한천 배지에서 접종하여 배양한 후, 상기 과정에 의해 정제된 박테리오파지 YMC15/11/N137_KPN_BP를 도말된 각각의 내성 균주에 5ul로 접종하여 플라그 형성을 확인하고, 역가 범위를 확인하여, 용균성을 하기 표 2에 나타내었다.
- [0072] 단, 상기 표 2에서 + 및 -는 수집된 균주에 대한 플라크 활성을 평가한 것으로, '+'는 투명한 플라크(clear plaque)를 의미하고, '-'는 용균이 일어나지 않은 것을 의미한다.

丑 2

[0074]

숙주 균주	용균 여부	숙주 균주	용균 여부
YMC15/09/P488	+	YMC15/11/R3218	+
YMC15/09/P546	+	YMC15/11/N154	+
YMC15/09/U2874	+	YMC15/11/R3705	+
YMC15/09/N45	_	YMC15/11/G223	+
YMC15/09/P756	+	YMC15/12/P746	+
YMC15/09/N55	+	YMC15/12/C910	+
YMC15/09/T741	+	YMC16/01/R859	+
YMC15/09/U4318	_	YMC16/01/N136	+
YMC15/09/P860	+	YMC16/01/N133	+
YMC15/09/C1052	+	YMC16/01/N141	+
YMC15/10/N12	+	YMC16/01/N164	+
YMC15/10/U1383	+	YMC16/01/N233	+
YMC15/10/P776	+	YMC16/01/N359	+
YMC15/10/N150	+	YMC16/01/R3917	+
YMC15/11/N1073	+	YMC16/01/R3958	+
YMC15/11/G57	+	YMC16/02/B372	+
YMC15/11/B4059	+	YMC16/02/N11	+
YMC15/11/U2284	_	YMC16/02/N162	_
YMC15/11/N45	_	YMC16/02/N394	+
YMC15/11/N53	+	YMC16/02/N393	+
YMC15/11/N54	+	YMC16/02/N499	_
YMC15/11/N96	+	YMC16/02/N726	_
YMC15/11/N98	+	YMC16/03/N942	+
YMC15/11/N101	+	YMC16/04/R1602	+
YMC15/11/N107	+	YMC16/05/N235	+
YMC15/11/N115	+	YMC16/05/N151	+
YMC15/11/N137	+		

[0076] 상기 표 2에서 보는 바와 같이, 본 발명에 따른 박테리오파지 YMC15/11/N137_KPN_BP는 항생제 내성 클렙시엘라 뉴모니아 53개 균주 중 46개 균주(87%)를 용균 시키는 것을 확인할 수 있었다.

[0078] [실시예 3] 항생제 내성 클렙시엘라 뉴모니아균에 대한 용균성 박테리오파지의 전자 현미경 분석

- [0079] 상기 실시예 2의 방법에 의해 정제된 박테리오파지를 감수성 균주 배양 배지(20ml LB 배지)에 접종 및 배양한 뒤 220nm 밀리포어 필터로 여과하고, 상청액에 폴리에틸렌글리콜(MW 8,000)을 10%(w/v)의 양으로 첨가한 후 밤새 냉장 보관하였다. 이후 12,000g의 조건으로 20분 동안 원심 분리한 뒤, 에너지 여과 투과 전자현미경 (Energy-Filtering Transmission Electron Microscope)을 이용하여 박테리오파지의 형태를 분석하여, 그 결과를 도 1에 나타내었다.
- [0080] 도 1에서 보는 바와 같이, 본 발명에 따른 상기 YMC15/11/N137_KPN_BP 박테리오파지를 모양으로 분류하는 기준으로 보았을 때, 파지가 수축성이 없는 긴 꼬리(a long non-contractile tail)를 갖고, 시스(sheath)가 없으므로 시포비리대(Siphoviridae)에 속하는 것으로 분류하였다.

[0082] [실시예 4] 박페리오파지의 흡착능 및 1단 중식 곡선(One-step growth curve) 분석

- [0083] 항생제 내성을 갖는 클렙시엘라 뉴모니아균을 0D 값이 0.5가 되도록 배양한 뒤, 클렙시엘라 뉴모니아균에 상기 실시예 2에서 정제된 박테리오파지 YMC15/11/N137_KPN_BP를 MOI 0.001로 넣고 상온에서 배양한 뒤, 100ul 시료를 1, 2, 3, 4, 5분에 1ml씩 채취하여 LB 배지에 희석한 뒤 플라그 분석을 통해 상기 박테리오파지의 흡착능을 평가하여, 그 결과를 도 2에 나타내었다.
- [0084] 또한, 항생제 내성을 갖는 클렙시엘라 뉴모니아균을 OD 값이 0.3이 되도록 배양한 뒤, 4에서 5분 동안 7,000g로 원심 분리하여 세포를 침전시킨 후, 0.5ml의 LB 배지에 희석시키고, 상기 실시예 2에서 정제된 박테리오파지를 MOI 0.001(titer 10 pfu/cells)를 넣고 37에서 5분 동안 배양하였다. 배양된 혼합 시료를 13,000g에서 1분 동안 원심 분리하여 얻어진 펠렛을 10ml의 LB 배지에 희석시키고 37에서 배양하였다. 배양 도중 10분 마다 시료를 채취하여 플라그 분석을 통해 상기 박테리오파지의 1단 중식 곡선을 평가하여, 그 결과를 도 3에 나타내었다.
- [0085] 도 2에서 보는 바와 같이, 상기 YMC15/11/N137_KPN_BP 박테리오파지의 접종 후 5분 이내에 박테리오파지의 94% 정도가 클렙시엘라 뉴모니아균에 흡착하였다.
- [0086] 또한, 도 3에서 보는 바와 같이, 1단 증식 곡선 결과 17PFU/감염 세포의 높은 버스트 사이즈를 나타내었다.
- [0087] 상기 결과를 통해 본 발명에 따른 상기 YMC15/11/N137_KPN_BP 박테리오파지는 항생제 내성을 갖는 클렙시엘라 뉴모니아균에 비교적 빠른 시간 내에 흡착할 수 있고, 17 PFU/감염 세포의 높은 버스트 사이즈를 나타내 항생제 내성 균주의 용균 효과를 발휘하는 것을 알 수 있다.
- [0089] [실시예 5] 생체 외 항생제 내성 클렙시엘라 속 균에 대한 박테리오파지의 용균능 검증
- [0090] 항생제 내성 클렙시엘라 뉴모니아균 1 X 10⁹ CFU/ml에 준비된 박테리오파지 YMC15/11/N137_KPN_BP를 1 X 10⁸ CFU/ml(MOI: 0.1), 1 X 10⁹ PFU/ml(MOI: 1), 1 X 10¹⁰ PFU/ml(MOI: 10)의 양으로 각각 처리하고 시간 별로 OD 값(파장 600nm)을 측정하였다. 단, 음성 대조군으로는 PBS+SM 버퍼를 처리하여, 그 값을 도 4에 나타내었다.
- [0091] 도 4에서 보는 바와 같이, 음성 대조군과 비교할 때, 클렙시엘라 뉴모니아균에 대하여 박테리오파지를 처리한 경우 OD 값이 감소하였고, MOI 값이 증가할수록 OD 값은 더욱 감소하였다.
- [0092] 상기 결과를 통해, 본 발명에 따른 박테리오파지는 항생제 내성 클렙시엘라 뉴모니아균에 대하여 용균성을 갖는 것을 알 수 있다.
- [0094] [실시예 6] 항생제 내성 클렙시엘라 속 균에 대한 박테리오파지의 안정성 평가
- [0095] 본 발명에 따른 YMC15/11/N137_KPN_BP 박테리오파지가 온도 및 알칼리에서 파괴되지 않고 안정성을 유지하는지 확인하였다.
- [0096] 상기 실시예 2의 방법에 의해 정제된 박테리오 파지 1 μ ℓ를 4, 5, 6, 7, 8, 9 및 10의 pH로 맞춘 SM 버퍼 40 μ ℓ 에 넣은 뒤, 37℃에서 1시간 동안 배양한 뒤 항생제 내성 클렙시엘라 뉴모니아균과 함께 상기 실시예 4의 방법으로 플라크 분석을 실시하여 그 결과를 도 5에 나타내었다.
- [0097] 또한, 상기 박테리오파지 용액을 각각 40℃, 50℃, 60℃ 및 70℃에서 배양하는 1시간 동안 10분 단위로 각각의 샘플을 클렙시엘라 뉴모니아균과 함께 상기 실시예 4의 방법으로 플라크 분석을 실시하여 그 결과를 도 6에 나타내었다.
- [0098] 도 5에서 보는 바와 같이, 본 발명에 따른 상기 파지는 pH 7에 해당하는 중성에서 가장 안정성을 나타내었고, 14일 동안 산성에 비해서는 알칼리성에서 비교적 안정성을 나타내었다.
- [0099] 또한, 도 6에서 보는 바와 같이, 상기 파지는 60℃에서 20분까지 30% 이상의 활성을 보일 정도로 높은 안정성을 보였다.
- [0101] [실시예 7] 항생제 내성 클렙시엘라 속 균에 대한 박테리오파지의 전체 게놈 서열 분석
- [0102] 본 발명에 따른 상기 YMC15/11/N137_KPN_BP 박테리오파지의 특성을 규명하기 위하여 전체 유전자 서열 분석을 Illumina sequencer(Roche)를 통하여 통상의 기술자에게 자명한 전체 게놈 서열 분석 방법을 기초로 분석하여, 그 결과를 도 7 및 표 3에 나타내었다.

Æ 3

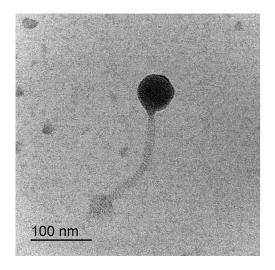
[0104]

0.71	HJ () (1	D)	-1) >) -7	2 = 711	ام اح	호기키노	조려 호리	E 1	MCDI	NCDI D 1
유전 체 번	범위(I	Range)	개시코 돈	스트랜 드	길이 (bp)	추정 기능 (Putative	주석 출처 (Annotation	E-val ue	NCBI blastP	NCBI-Bank accession
호	시작	종료		(stran d)		function)	source)		identit y (%)	number
ORF1	951	1136	ATC	+	186				y (10)	
ORF2	1139	1504	ATC	+	366					
ORF3	1507	1782	ATC	+	276					
ORF4	1779	1991	ATC	+	213	putative DNA binding protein	[Salmonella phage 35]	1.00E -14	53%	AKJ74148.1
ORF5	2154	2807	ATC	+	654	putative tail component K- like protein	[Salmonella phage 35]	9.00E -08	43%	AKJ74149.1
ORF6	2797	3048	ATC	+	252	head outer capsid protein	[Salmonella phage 35]	2.00E -04	47%	AKJ74154.1
ORF7	3057	3182	ATC	+	126					
ORF8	3199	3405	ATC	+	207					
ORF9	3402	3701	GTC	+	300					
ORF10		4057	ATC	+	345					
ORF11		4735	ATC	+	531					
ORF12		5200	ATC	+	114					
ORF13		7805	ATC	+	2592	primase	[Salmonella phage BP12C]	0	62%	YP_00930094 9.1
ORF14	7802	8083	ATC	+	282	putative transcriptio nal regulator	[Enterobacter phage Enc34]	2.00E -30	52%	WP_05752439 7.1
ORF15	8314	8706	ATC	+	393	RecT protein	[Salmonella phage 37]	2.00E -04	64%	YP_00922137 1.1
ORF16	8818	9111	ATC	+	294	Cas4-like protein	[Escherichia phage Utah]	0	74%	APD19328.1
ORF17	9104	10453	ATC	+	1350	Cas4-like protein	[Escherichia phage Utah]	0	74%	APD19328.1
ORF18	10500	11138	ATC	+	639	conserved phage protein	[Burkholderia phage BcepNazgul]	1.00E -38	41%	NP_919004.1
ORF19	11205	13247	ATC	+	2043	DNA	[Salmonella phage FSL SP- 124]	0	78%	AGF88048.1
ORF20	13286	13582	ATC	+	297	VRR-NUC domain- containing protein	[Salmonella phage SPN19]	2.00E -51	79%	YP_00699031 2.1
ORF21	13575	15116	ATC	+	1488	DNA helicase	[Escherichia phage Utah]	0	75%	APD19332.1
ORF22	15100	15669	ATC	+	570	TerS	Salmonella phage Chi]	2.00E -108	79%	YP_00910110 6.1
ORF23	15659	17734	ATC	+	2076	terminase large subunit	[Salmonella phage FSLSP030]	0	80%	YP_00823984 2.1
ORF24	17737	17997	ATC	+	261	head-tail joining protein lambda W	[Salmonella phage FSL SP- 019]		80%	AGF89268.1
ORF25	17997	19661	ATC	+	1665	portal protein	[Salmonella phage Chi]	0	77%	YP_00910110 9.1
ORF26	19685	20998	ATC	+	1341	prohead protease ClpP	[Salmonella phage FSL SP- 019]	5.00E -173	65%	AGF89266.1

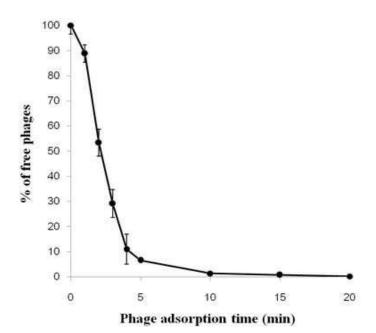
ORF27	21011	21400	ATC	+	390	decorator protein	[Salmonella phage FSLSP030]	1.00E -58	76%	YP_00823984 6.1
ORF28	21413	22477	ATC	+	1065	capsid protein	[Salmonella phage FSLSP030]	0	87%	YP_00823984 7.1
ORF29	22528	22797	ATC	+	270					
ORF30	22799	23164	ATC	+	366					
ORF31	23164	23784	ATC	+	621					
ORF32	23781	24284	ATC	+	504					
ORF33	24298	25437	ATC	+	1140	major tail protein	[Escherichia phage Utah]	3.00E -168	65%	APD19344.1
ORF34	25544	26002	ATC	+	459	tail assembly chaperone	[Salmonella phage Chi]	4.00E -53	57%	YP_00910111 9.1
ORF35	26044	26241	ATC	+	198	pre-tape measure frameshift protein	[Enterobacter phage Enc34]	7.00E -25	71%	YP_00700702 1.1
ORF36	26234	30547	ATC	+	4314	tape measure protein	[Salmonella phage BP12C]	0	66%	YP_00930092 6.1
ORF37	30551	33337	ATC	+	2787	putative tail assembly protein	[Serratia marcescens SM39]	3.00E -11	24%	BA032272.1
ORF38	33341	34189	GTC	+	849	putative FAD/FMN- containing dehydrogenas e	[Pseudomonas phage vB_PaeS_PA01_A b18]	1.00E -38	30%	YP_00912517 1.1
ORF39	34198	34425	ATC	+	228	tail assembly structural protein	[Pseudomonas phage MP1412]	1.00E -08	44%	YP_00656108 1.1
ORF40	34422	34628	ATC	+	207					
	34628			+	2286	virion structural protein	[Pseudomonas phage PaMx11	2.00E -111	33%	YP_00919628 5.1
ORF42	36916	37698	ATC	+	783	tail fiber protein	[Providencia phage Redjac]	1.00E -13	35%	YP_00690598 7.1
	37745			+	2610					
	40359			+	1095					
ORF45	41515	41673	ATC	+	159					
	41807			+	323					
ORF47	42086	42229	ATC	+	144					
ORF48	42229	42561	ATC	+	333	holin	[Escherichia phage SerU- LTIIb]	4.00E -09	34%	ALP46943.1
ORF49	42574	43158	ATC	+	585	lys gene product	[Erwinia phage PEp14]	2.00E -73	56%	YP_00509843 2.1
ORF50	43158	43547	ATC	+	390					
	43544			+	264					
	43831			_	201					
	44025			_	774					
	44795			_	300					
	45091			_	297					
	45389			_	210					
	45601			_	348					
	45952			_	513					
	46540			_	714					
		45570		_	-1679					

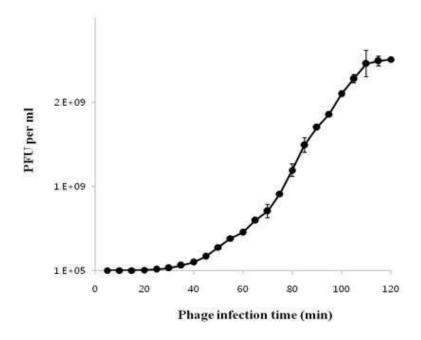
ORF61	47572	48321	ATC	-	750	putative head morphogenesi s protein	[Salmonella phage FSLSP088]	6.00E -46	35%	YP_00823993 2.1
ORF62	48321	49559	ATC	_	1239					
ORF63	49620	50726	ATC	-	1107	putative C- specific methylase	[Escherichia phage K1-ind(3)]	1.00E -107	55%	ADA82477.1
ORF64	50819	51211	ATC	_	393					
ORF65	51189	51452	ATC	_	264					
		51671		_	216					
ORF67	51674	52384	GTC	-	711	putative DNA adenine methylase	[Salmonella phage Chi]	8.00E -104	62%	YP_0091011 47.1
ORF68	52377	52697	ATC	_	321					
ORF69	52694	53014	ATC	_	321					
ORF70	53011	53493	ATC	-	483					
ORF71	53483	53890	ATC	-	408					
ORF72	53887	54654	ATC	_	768					
ORF73	54811	55083	ATC	-	273	endolysin	[Salmonella phage 37]	2.00E -22	48%	YP_00922144 8.1
ORF74	55085	55312	ATC	-	228	tail fiber protein	[Salmonella phage 35]	2.00E -14	59%	AKJ74137.1
ORF75	55314	56384	ATC	-	1071	exonuclease RdgC	[Salmonella phage FSL SP- 124]	2.00E -162	65%	AGF87999.1
ORF76	56374	56706	ATC	_	333					
ORF77	56703	57017	ATC	_	315					
ORF78	57014	57247	ATC	_	234					
ORF79	57240	57686	ATC	_	447					
ORF80	57699	58043	ATC		345	viral integrase family 4	[Salmonella phage 37]	3.00E -24	45%	YP_00922145 3.1
ORF81	58021	58482	ATC	_	462					
ORF82	58542	58919	ATC	_	378			_	_	

- [0106] 도 7 및 상기 표 3에서 보는 바와 같이, 본 발명에 따른 YMC15/11/N137_KPN_BP 박테리오파지가 용균 효과를 나타내는 단백질을 코딩하는 유전자의 서열은 ORF48(holing), ORF49 및 ORF73(endolysin) 등에 해당하였다.
- [0107] 삭제
- [0108] 본 발명에 따른 YMC15/11/N137_KPN_BP 박테리오파지의 서열을 기존의 박테리오파지의 서열과 대조한 결과, 본 발명에 따른 박테리오파지와 유사성을 갖는 박테리오파지는 검출되지 않았다.
- [0109] 상기 결과를 통해 본 발명에 따른 YMC15/11/N137_KPN_BP 박테리오파지는 기존에 발견되지 않은 신규한 박테리오 파지에 해당함을 알 수 있다.
- [0110] 이상에서 본 발명에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.

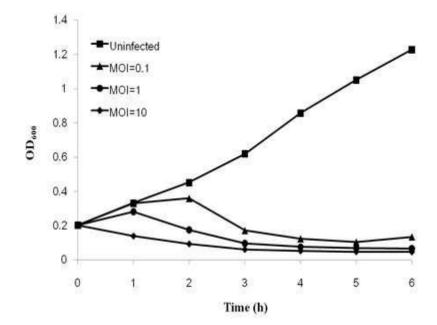

수탁번호

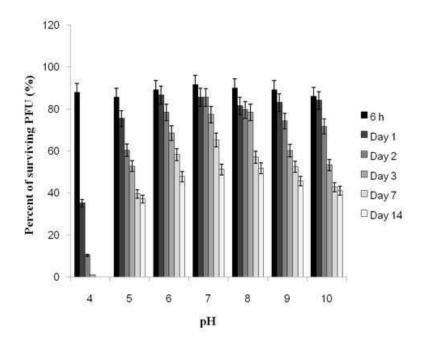
[0111]

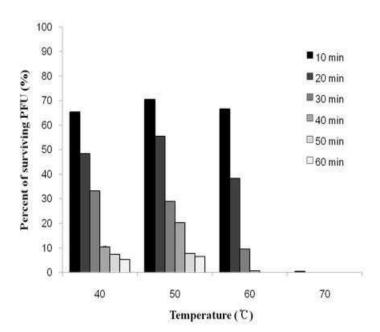

기탁기관명 : 한국생명공학연구원

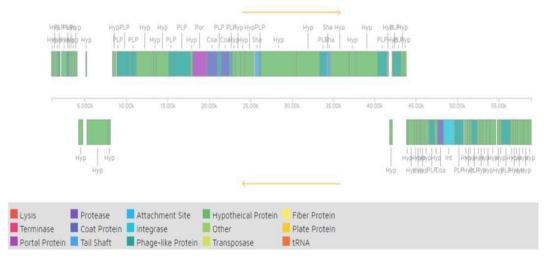

수탁번호 : KCTC18573P

도면




도면2




도면4

도면6

【심사관 직권보정사항】

【직권보정 1】

【보정항목】 청구범위

【보정세부항목】청구항 1

【변경전】

카바페넴(Carbapenem) 내성 클렙시엘라 뉴모니아(Klebsiella pneumoniae)에 대하여 특이적인 세포 사멸능을 갖고, 명칭은 YMC15/11/N137_KPN_BP이고, 기탁번호는 [KCTC18573P]인, 박테리오파지로,

상기 카바페넵은 앰피실린(Ampicillin), 엠피실린/설벡탐(Ampicillin/Sulbactam), 아즈트레오남(Aztreonam), 세즈타지딤(Ceftazidime), 세파졸린(Cefazolin), 에르타페넴(Ertapenem), 세페 핌(Cefepime), 세폭시틴(Cefoxitin), 세포탁심(Cefotaxime), 젠타마이신(Gentamicine), 레보플록세신(Levoflocacin), 메로페넴(Meropenem), 피페라실린/타조박탐(Piperacillin/Tazobactam), 코 트리목사(Cortrimoxa), 및 티게틸린(Tigecyline)으로 구성된 군으로부터 선택되는 1종 이상인, 박테리오파 지

【변경후】

카바페넴(Carbapenem) 내성 클렙시엘라 뉴모니아(Klebsiella pneumoniae)에 대하여 특이적인 세포 사멸능을 갖고, 명칭은 YMC15/11/N137_KPN_BP이고, 기탁번호는 [KCTC18573P]인, 박테리오파지로,

상기 카바페넴은 앰피실린(Ampicillin), 엠피실린/설벡탐(Ampicillin/Sulbactam), 아즈트레오남(Aztreonam), 세즈타지딤(Ceftazidime), 세파졸린(Cefazolin), 에르타페넴(Ertapenem), 세페 핌(Cefepime), 세폭시틴(Cefoxitin), 세포탁심(Cefotaxime), 젠타마이신(Gentamicine), 레보플록세신(Levoflocacin), 메로페넴(Meropenem), 피페라실린/타조박탐(Piperacillin/Tazobactam), 코 트리목사(Cotrimoxa), 및 티게틸린(Tigecyline)으로 구성된 군으로부터 선택되는 1종 이상인, 박테리오파 지.

【직권보정 2】

【보정항목】 발명(고안)의 설명

【보정세부항목】식별번호 0017

【변경전】

본 발명에서 상기 "항생제 내성"은 특정 항생제에 내성을 보여 약효가 듣지 않는 것을 의미하며, 본 발명의 목적상 상기 항생제는 카바페넴(Carbapenem)의 구조를 갖는 항생제일 수 있다. 구체적으로, 아미카신(Amicacin), 앰피실린(Ampicillin), 엠피실린/설벡탐(Ampicillin/Sulbactam), 아즈트레오남(Aztreonam), 세즈타지딤(Ceftazidime), 세파졸린(Cefazolin), 에르타페넴(Ertapenem), 세페핌(Cefepime), 세폭시틴(Cefoxitin), 세포탁심(Cefotaxime), 젠타마이신(Gentamicine), 레보플록세신(Levoflocacin), 메로페넴(Meropenem), 피페라실린/타조박탐(Piperacillin/Tazobactam), 코트리목사(Cortrimoxa), 및 티케틸린(Tigecyline)으로 구성된 군으로부터 선택되는 1종 이상일 수 있으나, 이에 제한되는 것은 아니다. 본 발명의 목적상 상기 클랩시엘라 뉴모니아는 항생제 내성을 갖는 것일 수 있고, 상기 항생제 내성은 상기 카바페넴을 분해하여 효과의 발휘를 억제하는 카바페넴아제 효소(carbapenemase)를 생산함으로써 발생될 수 있다.

【변경후】

본 발명에서 상기 "항생제 내성"은 특정 항생제에 내성을 보여 약효가 듣지 않는 것을 의미하며, 본 발명의 목적상 상기 항생제는 카바페넴(Carbapenem)의 구조를 갖는 항생제일 수 있다. 구체적으로, 아미카신(Amicacin), 앰피실린(Ampicillin), 엠피실린/설벡탐(Ampicillin/Sulbactam), 아즈트레오남(Aztreonam), 세즈타지딤(Ceftazidime), 세파졸린(Cefazolin), 에르타페넴(Ertapenem), 세페핌(Cefepime), 세폭시틴(Cefoxitin), 세포탁심(Cefotaxime), 젠타마이신(Gentamicine), 레보플록세신(Levoflocacin), 메로페넴(Meropenem), 피페라실린/타조박탐(Piperacillin/Tazobactam), 코트리목사(Cotrimoxa), 및 티케틸린(Tigecyline)으로 구성된 군으로부터 선택되는 1종 이상일 수 있으나, 이에 제한되는 것은 아니다. 본 발명의 목적상 상기 클렙시엘라 뉴모니아는 항생제 내성을 갖는 것일 수 있고, 상기 항생제 내성은 상기 카바페넴을 분해하여 효과의 발휘를 억제하는 카바페넴아제효소(carbapenemase)를 생산함으로써 발생될 수 있다.

【직권보정 3】

【보정항목】 발명(고안)의 설명

【보정세부항목】식별번호 0059

【변경전】

세브란스 병원 환자들로부터 환자의 분변 내 클렙시엘라 뉴모니아(Klebsiella pneumoniae) 균을 배양하여 분리하였다. 그 뒤, 감수성 결과는 Clinical and Laboratory Standards Institute (CLSI, 2009)를 기준으로 판독하였다. 감수성 시험은 뮬러-힌튼(Mueller-Hinton) 아가를 사용하여 외기 37℃에서 하룻밤 동안 배양하는 CLSI 디스크 확산 시험방법을 사용하였다. 클렙시엘라 뉴모니아 균에 대한 시험 항생제는 아미카신(Amicacin), 앰피실린(Ampicillin), 엠피실린/설벡탐(Ampicillin/Sulbactam), 아즈트레오남(Aztreonam), 세즈타지딤(Ceftazidime), 세파졸린(Cefazolin), 에르타페넴(Ertapenem), 세페핌(Cefepime), 세폭시틴(Cefoxitin), 세포탁심(Cefotaxime), 젠타마이신(Gentamicine), 레보플록사신(Levofloxacin), 메로페넴(Meropenem), 피페라실린/타조박탐(Piperacillin/Tazobactam), 코트리목사(Cortrimoxa), 및 티게틸린(Tigecyline)을 사용하였다. 수집된 클렙시엘라 뉴모니아(Klebsiella pneumoniae) 53개 주의 항생제 내성 프로파일은 하기 표 1에 나타내었다. 단, 하기 표 1에서 S, I 및 R은 항균제에 대한 감수성을 평가한 결과로, 'S'는 민감(Susceptible), 'I'는 중간(Intermediate), 'R'은 내성(Resistant)를 의미한다.

[변경후]

세브란스 병원 환자들로부터 환자의 분변 내 클렙시엘라 뉴모니아(Klebsiella pneumoniae) 균을 배양하여 분리하였다. 그 뒤, 감수성 결과는 Clinical and Laboratory Standards Institute (CLSI, 2009)를 기준으로 판독하였다. 감수성 시험은 뮬러-힌튼(Mueller-Hinton) 아가를 사용하여 외기 37℃에서 하룻밤 동안 배양하는 CLSI 디스크 확산 시험방법을 사용하였다. 클렙시엘라 뉴모니아 균에 대한 시험 항생제는 아미카신(Amicacin), 앰피실린(Ampicillin), 엠피실린/설벡탐(Ampicillin/Sulbactam), 아즈트레오남(Aztreonam), 세즈타지딤(Ceftazidime), 세파졸린(Cefazolin), 에르타페넴(Ertapenem), 세페핌(Cefepime), 세폭시틴(Cefoxitin), 세포탁심(Cefotaxime), 젠타마이신(Gentamicine), 레보플록사신(Levofloxacin), 메로페넴(Meropenem), 페페라실린/타조박탐(Piperacillin/Tazobactam), 코트리목사(Cotrimoxa), 및 티케틸린(Tigecyline)을 사용하였다. 수집된 클렙시엘라 뉴모니아(Klebsiella pneumoniae) 53개 주의 항생제 내성 프로파일은 하기 표 1에 나타내었다. 단, 하기 표 1에서 S, I 및 R은 항균제에 대한 감수성을 평가한 결과로, 'S'는 민감(Susceptible), 'I'는 중간(Intermediate), 'R'은 내성(Resistant)를 의미한다.