

(19) 대한민국특허청(KR)(12) 공개특허공보(A)

(51) 국제특허분류(Int. Cl.)

A61B 6/00 (2006.01) **A61B 6/10** (2006.01)

(52) CPC특허분류

A61B 6/542 (2013.01) *A61B 6/107* (2013.01)

(21) 출원번호

10-2017-0054522

(22) 출원일자 심사청구일자

2017년04월27일

2017년04월27일

(11) 공개번호 10-2018-0120867

(43) 공개일자 2018년11월07일

(71) 출원인

주식회사 리스템

강원도 원주시 문막읍 동화공단로 94

연세대학교 원주산학협력단

강원도 원주시 흥업면 연세대길 1

(72) 발명자

문창호

서울특별시 강남구 압구정로 201, 84동 404호(압 구정동, 현대아파트)

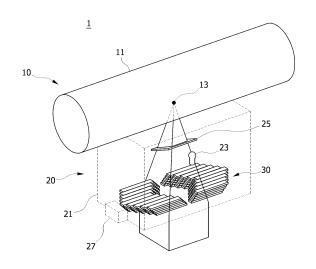
문상진

서울특별시 성동구 뚝섬로 436, 101동 803호(성수 동2가, 대명루첸아파트)

(뒷면에 계속)

(74) 대리인

특허법인이룸리온


전체 청구항 수 : 총 8 항

(54) 발명의 명칭 환자의 피폭선량 변조장치 및 이를 포함하는 디지털 단층 영상 합성 시스템

(57) 요 약

방사선 세기 변조장치가 제공된다. 방사선 세기 변조장치는 피검체에 방사선을 조사하는 조사방향을 따라 순차적으로 적층되는 복수개의 차폐층을 포함하여 방사선의 조사영역의 차폐율을 조절하는 세기 조절부; 방사선의 조사영역을 표시할 수 있도록 광을 출력하는 광원 및 광원으로부터 조사되는 광의 경로를 조절하는 반사경을 포함한다.

대 표 도 - 도1

(52) CPC특허분류

A61B 6/40 (2013.01)

(72) 발명자

신정욱

경상남도 김해시 월산로 142, 301동 701호(부곡동, 월산마을부영아파트)

김희중

강원도 원주시 늘품로 199, 102동 304호 (반곡동, 원주반곡아이파크)

최성훈

서울특별시 노원구 덕릉로 613, 301동 1106호 (중계동, 우성3차아파트)

이행화

강원도 원주시 흥업면 연세대길 1 백운관 425호 (매지리)

이동훈

강원도 원주시 흥업면 연세대길 1 백운관 439호 (매지리)

최숭연

강원도 원주시 단구로 413, 502동 1202호 (단구동, 현진에버빌5차)

이 발명을 지원한 국가연구개발사업

과제고유번호 R0002898

부처명 산업통상자원부

연구관리전문기관 강원지역사업평가단

연구사업명 경제협력권산업 육성사업

연구과제명 흉부촬영용 디지털 단층영상합성 R/F시스템 개발

기 여 율 1/1

주관기관 (주)리스템

연구기간 2014.05.01 ~ 2018.04.30

조병두

강원도 원주시 동진골4길 9 (일산동)

김혜미

강원도 원주시 흥업면 연세대길 1 백운관 425호 (매지리)

김도현

강원도 원주시 흥업면 연세대길 1 백운관 425호 (매지리)

이민재

인천광역시 서구 청라한울로 95, 306동 701호 (경 서동, 청라제일풍경채)

손준영

경기도 과천시 별양로 111, 506동 602호 (별양동, 주공아파트)

차오 젠

강원도 원주시 흥업면 연세대길 1 백운관 425호 (매지리)

명 세 서

청구범위

청구항 1

피검체에 방사선을 조사하는 조사방향을 따라 순차적으로 적충되는 복수개의 차폐충을 포함하여 방사선의 조사 영역의 차폐율을 조절하는 세기 조절부;

상기 방사선의 조사영역을 표시할 수 있도록 광을 출력하는 광원 및

상기 광원으로부터 조사되는 광의 경로를 조절하는 반사경을 포함하는 방사선 세기 변조장치.

청구항 2

제1 항에 있어서,

상기 복수개의 차페층은 차페율이 다른 재질로 형성되는 방사선 세기 변조장치.

청구항 3

제2 항에 있어서.

상기 복수개의 차폐층은 조사방향을 따라 순차적으로 차폐율이 낮은 재질로 형성되는 방사선 세기 변조장치.

청구항 4

제3 항에 있어서.

상기 복수개의 차폐층은 차폐율이 낮은 차폐층에서부터 높은 차폐층까지 순차적으로 피검체를 중심으로 멀어지 도록 배치되는 방사선 세기 변조장치.

청구항 5

제1 항에 있어서.

상기 복수개의 차폐층은 피검체를 중심에서 외측방향으로 갈수록 서로 겹치는 부분이 많아져서 차폐율이 증가되는 방사선 세기 변조장치.

청구항 6

제1 항에 있어서.

상기 복수개의 차폐층 각각은 조사방향과 수직방향으로 동일한 차폐율을 갖는 복수개의 차폐부재가 측방향으로 서로 연결되어 배치되는 방사선 세기 변조장치.

청구항 7

제1 항에 있어서.

상기 세기 조절부는 상기 복수개의 차폐층의 위치를 피검체의 위치 및 크기에 따라 조절하는 구동모터를 더 포함하는 방사선 세기 변조장치.

청구항 8

방사선을 발생시키는 방사선 발생장치;

상기 방사선 발생장치에서 방사선이 조사되는 경로에 위치하는 제1 항 내지 제 7항 중 어느 한 항에 따른 방사선 세기 변조장치; 및

상기 방사선 세기 변조장치를 통해 조사되는 방사선이 피검체를 통과하는 방사선을 검출하는 디텍터를 포함하는 디지털 단층 영상 합성 시스템.

발명의 설명

기술분야

[0001] 본 발명은 방사선 세기 변조 장치 및 이를 포함하는 디지털 단층 영상 합성 시스템에 관한 것이다.

배경기술

- [0002] 일반적으로 컴퓨터 단층 촬영 영상 등의 3차원 의료 영상은 피검체를 개괄적이고 일목요연하게 파악할 수 있는 장점이 있으나 피검체의 내부 구조 등을 더욱 자세히 관찰하기 위해서는 높은 X선 촬영조건 및 많은 수의 투사 영상을 획득하는 것이 필수적이며 이는 피검체가 받게 되는 높은 선량 문제를 야기시킨다.
- [0003] 최근에는 이러한 피검체의 선량 문제 및 영상화질을 개선할 수 있는 디지털 단층 합성 촬영 시스템(DTS: Digital Tomosynthesis System)이 개발되고 임상에 적용하기 위한 많은 연구가 진행 중이다.
- [0004] 이러한, 디지털 단층 합성 촬영 시스템은 360도를 회전하면서 피검체를 촬영하여 영상을 획득한 후 3차원 데이터를 재구성하는 것과 달리, 제한된 각도 내에서 다각도로, 즉 각도별로 획득된 투사 영상 데이터를 사용하여 단층 영상을 재구성하는 시스템이다.
- [0005] 이와 같은 이유로, 단층 합성 촬영 시스템은 컴퓨터 단층 촬영 시스템의 많은 조사 선량과 회전 각도에 대한 제약점을 해결하면서, 피검체의 3차원 단층 영상을 제공하면서 의미 있고 효율성이 높은 진단 기술로 인식되고 있다.
- [0006] 하지만, 디지털 단층 합성 촬영 시스템도 3차원 단층 영상을 제공하기 위하여 X선 일반촬영장치 보다 높은 조사 선량이 요구되며, 투사 영상 데이터 획득 방법에 기인한 재구성 영상에서의 인공물로 인한 병변의 식별력이 저 하되는 경우가 있다.
- [0007] 따라서, 디지털 단층 합성 촬영 시스템을 이용한 피검체 내부 구조 등을 더욱 자세히 관찰하기 위해서는 새로운 촬영 기술을 이용하여 효율적으로 조사선량을 감소시킬 수 있으며, 병변에 대하여 정확한 식별력을 제공할 수 있는 영상화 방법 및 영상 처리 기술이 요구되고 있다.
- [0008] 현재 병원에서 디지털 단층 합성 촬영 시스템은 환자의 병변에 대한 수술 또는 시술 후 환자의 경과를 확인하기 위한 후속 촬영법으로 활발히 사용되고 있으며, 병변의 위치에 대한 정보를 알고 있는 상태에서 영상을 획득한 다는 특징이 있다.
- [0009] 다만 기존의 디지털 단층 합성 촬영 시스템은 선속의 모양과 크기만을 조절하여 필요한 방향으로 방사선을 조사 함으로써 피검체의 병변이 위치한 조사부위 외의, 관찰이 필요한 주변 조사부위에 대한 영상화가 불가능한 문제점이 있다.

발명의 내용

해결하려는 과제

[0010] 본 발명의 일 실시예는 병변이 있는 부위와 병변의 주변부위에만 제한적으로 X선을 조사하여 영상을 획득함으로 써 피검체 내부 구조 중 방사선민감도가 높은 장기에 대한 조사선량을 감소시킬 수 있어 효율적으로 병변 부위를 영상화 할 수 있는 방사선 세기 변조 장치 및 이를 포함하는 디지털 단층 영상 합성 시스템을 제공하고자 한다.

과제의 해결 수단

- [0011] 본 발명의 일 측면에 따르면 피검체에 방사선을 조사하는 조사방향을 따라 순차적으로 적충되는 복수개의 차폐충을 포함하여 방사선의 조사영역의 차폐율을 조절하는 세기 조절부; 상기 방사선의 조사영역을 표시할 수 있도록 광을 출력하는 광원 및 상기 광원으로부터 조사되는 광의 경로를 조절하는 반사경을 포함하는 방사선 세기 변조장치를 제공한다.
- [0012] 이때, 상기 복수개의 차폐층은 차폐율이 다른 재질로 형성될 수 있다.

- [0013] 이때, 상기 복수개의 차폐층은 조사방향을 따라 순차적으로 차폐율이 낮은 재질로 형성될 수 있다.
- [0014] 이때, 상기 복수개의 차폐층은 차폐율이 낮은 차폐층에서부터 높은 차폐층까지 순차적으로 피검체를 중심으로 멀어지도록 배치될 수 있다.
- [0015] 이때, 상기 복수개의 차폐층은 피검체를 중심에서 외측방향으로 갈수록 서로 겹치는 부분이 많아져서 차폐율이 증가될 수 있다.
- [0016] 이때, 상기 복수개의 차폐층 각각은 조사방향과 수직방향으로 동일한 차폐율을 갖는 복수개의 차폐부재가 측 방향으로 서로 연결되어 배치될 수 있다.
- [0017] 이때, 상기 세기 조절부는 상기 복수개의 차폐층의 위치를 피검체의 위치 및 크기에 따라 조절하는 구동모터를 더 포함할 수 있다.
- [0018] 본 발명의 다른 측면에 따르면 방사선을 발생시키는 방사선 발생장치; 상기 방사선 발생장치에서 방사선이 조사되는 경로에 위치하는 전술한 방사선 세기 변조장치; 및 상기 방사선 세기 변조장치를 통해 조사되는 방사선이 피검체를 통과하는 방사선을 검출하는 디텍터를 포함하는 디지털 단층 영상 합성 시스템을 제공한다.

발명의 효과

- [0019] 본 발명의 일 실시예에 따른 방사선 세기 변조장치 및 이를 포함하는 디지털 단층 영상 합성 시스템은 흉부의 외과적 수술을 받은 환자의 후속조치로 디지털 단층 영상 합성 시스템을 이용할 경우 이미 병변의 위치가 파악이 되었을 때 병변 주변의 여분의 부위에만 방사선이 집중 조사가 될 수 있도록 방사선의 세기를 조절할 수 있다.
- [0020] 본 발명의 일 실시예에 따른 방사선 세기 변조장치 및 이를 포함하는 디지털 단층 영상 합성 시스템은 단층 합성 촬영 시 병변이 있는 부위와 병변의 주변부위에만 제한적으로 X선을 조사하여 영상을 획득하여 피검체 내부구조 중 방사선민감도가 높은 장기에 대한 조사선량을 감소시킴으로써 효율적으로 병변 부위를 영상화 할 수 있다.
- [0021] 본 발명의 일 실시예에 따른 방사선 세기 변조장치 및 이를 포함하는 디지털 단층 영상 합성 시스템은 최소한의 선량으로 환자를 촬영할 수 있도록 방사선의 세기를 조절할 수 있다.
- [0022] 본 발명의 일 실시예에 따른 방사선 세기 변조장치 및 이를 포함하는 디지털 단층 영상 합성 시스템은 병변의 조사 범위와 병변의 주변 부위에만 방사선이 집중 조사될 수 있도록 방사선 흡수율이 다양한 차폐 물질을 이용하여 방사선의 세기를 조절할 수 있다.
- [0023] 본 발명의 일 실시예에 따른 방사선 세기 변조장치 및 이를 포함하는 디지털 단층 영상 합성 시스템은 진단영상을 획득할 때 차폐율이 다른 물질 층의 얇은 막대들이 불필요한 X-선의 피폭을 감소함으로써 환자의 피폭선량 경감에 일조할 수 있다.
- [0024] 본 발명의 일 실시예에 따른 방사선 세기 변조장치 및 이를 포함하는 디지털 단층 영상 합성 시스템은 세기 조절부를 포함하여 병변의 진단영상에 맞게 복수개의 차폐층의 위치를 조절함으로써 환자의 X-선 조사범위가 감소되고 산란선이 줄어들어 영상의 질을 개선할 수 있다.
- [0025] 본 발명의 일 실시예에 따른 방사선 세기 변조장치 및 이를 포함하는 디지털 단층 영상 합성 시스템은 병변의 위치와 모양, 뿐만 아니라 차폐층들의 배열에 따라 관찰이 필요한 범위를 조절하여 사용자 편의성을 제공할 수 있다.
- [0026] 본 발명의 일 실시예에 따른 방사선 세기 변조장치 및 이를 포함하는 디지털 단층 영상 합성 시스템은 면적이 넓은 흉부, 뿐만 아니라 무릎관절, 손등 뼈, 부비동, 유방 촬영 등 다른 신체와 더 나아가 다양한 진단 시스템 에 이용이 가능할 수 있다.
- [0027] 본 발명의 일 실시예에 따른 방사선 세기 변조장치 및 이를 포함하는 디지털 단층 영상 합성 시스템은 영상진단 시스템 의료 시장 진출을 위한 데이터베이스로 이용될 수 있으며, 국내 디지털 단층영상 합성시스템의 산업화 및 기술개발에 기여할 수 있다.

도면의 간단한 설명

[0028] 도 1은 본 발명의 일 실시예에 따른 방사선 세기 변조장치 및 이를 포함하는 디지털 단층 영상 합성 시스템을

도시한 사시도이다.

도 2는 본 발명의 일 실시예에 따른 방사선 세기 변조장치 및 이를 포함하는 디지털 단충 영상 합성 시스템를 도시한 측면도이다.

도 3은 본 발명의 일 실시예에 따른 방사선 세기 변조장치의 세기 조절부를 도시한 평면도이다.

도 4는 본 발명의 일 실시예에 따른 방사선 세기 변조장치의 세기 조절부를 도시한 측면도이다.

도 5는 본 발명의 일 실시예에 따른 방사선 세기 변조장치를 사용하여 방사선의 세기를 나타내는 개략도이다.

발명을 실시하기 위한 구체적인 내용

- [0029] 이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참고부호를 붙였다.
- [0030] 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해 되어야 한다. 또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 있다고 할 경우, 이는 다른 부분 "바로 위에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 층, 막, 영역, 판 등의 부분이 다른 부분 "아래에" 있다고 할 경우, 이는 다른 부분 "바로 아래에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다.
- [0031] 도 1은 본 발명의 일 실시예에 따른 방사선 세기 변조장치 및 이를 포함하는 디지털 단층 영상 합성 시스템을 도시한 사시도이다. 도 2는 본 발명의 일 실시예에 따른 방사선 세기 변조장치 및 이를 포함하는 디지털 단층 영상 합성 시스템를 도시한 측면도이다.
- [0032] 도 1을 참고하면, 본 발명의 일 실시예에서 디지털 단층 영상 합성 시스템(1)은 방사선 발생장치(10), 방사선 세기 변조장치(20), 제어부(미도시) 및 디텍터(detector, 미도시)를 포함할 수 있다.
- [0033] 이를 통해 본 발명의 일 실시예에 따른 디지털 단층 영상 합성 시스템(1)은 흉부의 외과적 수술을 받은 환자의 후속조치로 이미 병변의 위치가 파악이 되었을 때 병변 주변의 여분의 부위에만 방사선이 집중 조사가 될 수 있도록 하고, 최소한의 선량으로 환자를 촬영할 수 있도록 방사선의 세기를 조절할 수 있다.
- [0034] 한편, 본 발명의 일 실시예에서 방사선 발생장치(10)는 원기등 형상의 엑스선(X-ray) 튜브(11)일 수 있다. 이때 엑스선 튜브(11)는 고속의 전자를 물체에 충돌시킬 때 방출되는 파장이 짧고, 투과력이 강한 전자기파인 엑스선을 발생시킨다.
- [0035] 또한, 엑스선 튜브(11)는 열전자를 방출하는 필라멘트와 고전압으로 강한 전기장을 형성하는 전극을 포함할 수 있다. 이때, 고전압을 엑스선 튜브(11)에 인가하면 음극을 이루는 필라멘트에서 열전자를 방출한다.
- [0036] 도 1을 참고하면, 엑스선 튜브(11)는 방출된 열전자가 강한 전기장에 의해 표류하다가 양극에 충돌하게 되고, 열전자가 충돌한 국소크기의 지점이 엑스선 발생지점(13)으로서 이 지점에서 엑스선을 발생시킨다.
- [0037] 도 1 및 도 2를 참고하면, 방사선 발생장치(10)에서 발생하는 엑스선이 조사되는 위치에 방사선 세기 변조장치 (20)가 배치될 수 있다. 이때 조사된 엑스선은 방사선 세기 변조장치(20)를 통해서 병변의 조사 범위와 병변의 주변 부위에만 방사선이 집중 조사될 수 있도록 할 수 있다.
- [0038] 도 1 및 도 2를 참고하면, 방사선 세기 변조장치(20)는 하우징(21), 광원(23), 반사경(25) 및 세기 조절부(30)를 포함할 수 있다. 이를 통해 본 발명의 일 실시예 따른 방사선 세기 변조장차(20)는 디지털 단층 영상 합성시스템(1)을 통해 환자를 촬영하고자 하는 경우 방사선 흡수율을 다양하게 하여 불필요한 X-선의 피폭을 감소시킬 수 있고, 병변의 진단영상에 맞게 조절함으로써 환자의 X-선 조사범위가 감소되며 산란선이 줄어들어 영상의질을 개선할 수 있다.
- [0039] 본 발명의 일 실시예에서 하우징(21)은 내부에 광원(23), 반사경(25) 및 세기 조절부(30)가 설치될 수 있는 중 공부가 형성될 수 있다. 또한, 하우징(21)은 엑스선이 조사되는 위치에 제1 개구부(미도시)가 형성되고, 엑스선

- 이 방출되는 위치에 제2 개구부(미도시)가 형성될 수 있다.
- [0040] 한편, 본 발명의 일 실시예에서 광원(23)은 엑스선이 조사되는 경로를 향해 가시광선을 조사할 수 있다. 이때 엑스선은 사람의 눈에 보이지 않으므로, 방사선 세기 변조장치(20)를 통해 외부로 조사되는 엑스선의 조사영역을 육안으로 확인하기 위해서 엑스선이 조사되는 영역에 가시광선을 함께 조사하여 엑스선이 조사되는 영역을 육안으로 확인할 수 있다.
- [0041] 또한, 광원(23)은 소정의 주파수로 점멸하는 광원으로써, LED(light emitting diode), LD(laser diode)와 같은 반도체 발광 소자와 할로겐 램프나 제논(Xenon)램프와 같은 가스 방전 램프가 이용될 수 있으나 이에 한정되는 것은 아니다.
- [0042] 한편, 엑스선이 조사되는 영역을 가시광선으로 나타내기 위해서는 가시광선을 출력하는 광원(23)이 엑스선의 발생지점과 동일한 지점에 위치해야 하나 엑스선의 발생지점(13)과 동일한 위치에서 가시광선을 출력하는 광원(23)을 배치할 수 없으므로 광원(6)은 도 1 및 도 2에 도시된 바와 같이, 엑스선의 조사경로 외부에 마련되어 엑스선의 조사경로를 향해 가시광선을 조사할 수 있다.
- [0043] 도 2를 참고하면, 본 발명의 일 실시에에서 반사경(25)은 광원(23)으로부터 조사된 가시광선의 조사경로상에 배치되어 가시광선의 조사경로를 변경할 수 있다.
- [0044] 이때, 반사경(25)에 의해 반사된 가시광선의 조사영역을 엑스선의 조사영역과 일치시키기 위해 반사경은 가시광선의 조사영역을 전의 조사방향과 일정한 각도를 이루도록 배치될 수 있다. 이렇게 반사경(25)을 이용하여 가시광선의 조사경로를 변경함으로써 엑스선의 조사영역을 가시광선으로 표시할 수 있다.
- [0045] 한편, 도 1 및 2를 참고하면, 본 발명의 일 실시예에서 세기 조절부(30)는 엑스선을 선택적으로 차폐시킬 수 있다.
- [0046] 이를 통해 본 발명의 일 실시예에 따른 방사선 세기 변조장치(20)는 병변의 위치와 모양, 뿐만 아니라 복수개의 차폐부재(31a, 33a, 35a, 37a, 39a)의 배열 및 차폐율(재질)에 따라 관찰이 필요한 범위를 조절하여 병변이 있는 부위와 병변의 주변부위에만 제한적으로 X선을 조사하여 영상을 획득하여 피검체 내부 구조 중 방사선민감도 가 높은 장기에 대한 조사선량을 감소시킴으로써 효율적으로 병변 부위를 영상화 할 수 있다.
- [0047] 한편, 본 발명의 일 실시예에 따른 방사선 세기 변조장치(20)는 면적이 넓은 흉부, 뿐만 아니라 무릎관절, 손등 뼈, 부비동, 유방 촬영 등 다른 신체와 더 나아가 다양한 진단 시스템에 이용이 가능할 수 있다.
- [0048] 도 3은 본 발명의 일 실시예에 따른 방사선 세기 변조장치의 세기 조절부를 도시한 평면도이다. 도 4는 본 발명의 일 실시예에 따른 방사선 세기 변조장치의 세기 조절부를 도시한 측면도이다. 도 5는 본 발명의 일 실시예에 따른 방사선 세기 변조장치를 사용하여 방사선의 세기를 나타내는 개략도이다.
- [0049] 도 3을 참고하면, 본 발명의 일 실시예에서 세기 조절부(30)는 제1 차폐충(31), 제2 차폐충(33), 제3 차폐충(35), 제4 차폐충(37) 및 제5 차폐충(39)이 순차적으로 적충될 수 있다. 이때, 세기 조절부(30)는 차폐율을 조절하기 위해서 차폐충의 개수의 조절이 가능할 수 있다.
- [0050] 본 발명의 일 실시예에서 세기 조절부(30) 각각 예를 들어 도 3 및 도 4에 도시된 바와 같이 복수개의 차폐층 (31, 33, 35, 37, 39) 각각은 각각은 복수개의 차폐부재(31a, 33a, 35a, 37a, 39a)가 측 방향으로 서로 연결되어 피검체(병변, P)의 길이방향을 따라 배치될 수 있다.
- [0051] 더욱 상세히, 도 3 및 도 4를 참고하면, 세기 조절부(30)는 제1 차폐층(31), 제2 차폐층(33), 제3 차폐층(35), 제4 차폐층(37) 및 제5 차폐층(39)가 순차적으로 적충될 수 있다.
- [0052] 또한, 제1 차폐충(31)은 복수개의 제1 차폐부재(31a)가 병변의 길이방향을 따라 측 방향으로 서로 연결될 수 있다. 이때 복수개의 제1 차폐부재(31a)는 병변의 조사 범위(S1)와 병변의 주변 부위(S2)를 포함할 수 있도록 병변과 소정의 간격으로 이격배치될 수 있다.
- [0053] 본 발명의 일 실시예에서 제2 차폐층(33), 제3 차폐층(35), 제4 차폐층(37) 및 제5 차폐층(39)은 제1 차폐층 (31)와 동일하게 각각 복수개의 제2 차폐부재(33a), 복수개의 제3 차폐부재(35a), 복수개의 제4 차폐부재(37a) 및 복수개의 제5 차폐부재(39a)가 병변의 길이방향을 따라 측 방향으로 서로 연결될 수 있다.
- [0054] 이때 복수개의 제2 차폐부재(33a), 복수개의 제3 차폐부재(35a), 복수개의 제4 차폐부재(37a) 및 복수개의 제5

차페부재(39a)는 병변의 조사 범위(S1)와 병변의 주변 부위(S2)를 포함할 수 있도록 병변과 소정의 간격으로 이격 배치될 수 있다.

- [0055] 한편, 본 발명의 일 실시예에서 도 3 및 도 4를 참고하면, 세기 조절부(30)는 차폐율을 조절하기 위해서 순차적으로 적충된 제1 차폐층(31), 제2 차폐층(33), 제3 차폐층(35), 제4 차폐층(37) 및 제5 차폐층(39)은 병변의 외측방향으로 갈수록 제1 차폐층(31), 제2 차폐층(33), 제3 차폐층(35), 제4 차폐층(37) 및 제5 차폐층(39)이 겹치는 부분이 많아지도록 하여 차폐율을 증가시킬 수 있다.
- [0056] 또한 도 4는 본 발명의 일 예로서, 세기 조절부(30)는 차폐율을 조절하기 위해서 순차적으로 적충된 제1 차폐충 (31), 제2 차폐충(33), 제3 차폐충(35), 제4 차폐충(37) 및 제5 차폐충(39)이 병변의 외측방향으로 갈수록 제1 차폐충(31), 제2 차폐충(33), 제3 차폐충(35), 제4 차폐충(37) 및 제5 차폐충(39)이 겹치는 부분이 많아지도록 하여 차폐율이 증가된다면 도 4의 역방향으로 적충될 수 있다.
- [0057] 이를 통해 본 발명의 일 실시예에 따른 방사선 세기 변조장치(20)는 도 5를 참고하면 방사선 흡수율이 다르게 하기 위해서 차폐층의 배치를 조절하는 세기 조절부(30)를 포함하여 병변이 있는 부위와 병변의 주변부위에만 제한적으로 X선을 조사함으로써 영상을 획득하여 피검체 내부 구조 중 방사선민감도가 높은 장기에 대한 조사선 량을 감소시킴으로써 효율적으로 병변 부위를 영상화 할 수 있다.
- [0058] 한편, 본 발명의 일 실시예에서 세기 조절부(30)는 차폐율을 조절하기 위해서 순차적으로 적충된 제1 차폐충 (31), 제2 차폐충(33), 제3 차폐충(35), 제4 차폐충(37) 및 제5 차폐충(39)은 차폐율이 서로 다른 재질로 형성 됨으로써 각각 방사선을 투과시키는 비율을 다르게 할 수 있다.
- [0059] 본 발명의 일 예로서, 순차적으로 적층된 제1 차폐층(31), 제2 차폐층(33), 제3 차폐층(35), 제4 차폐층(37) 및 제5 차폐층(39)은 각각 10 %, 39 %, 50 %, 70 % 및 90 %일 수 있다. 즉, 세기 조절부(30)는 상부측으로 갈수록 차폐율이 높을 수 있으나 차폐율을 조절할 수 있다면 이에 한정되지는 않는다.
- [0060] 이를 통해 본 발명의 일 실시예에 따른 방사선 세기 변조장치(20)는 도 5를 참고하면 방사선 흡수율이 다양한 차폐 물질을 이용하는 세기 조절부(30)를 포함하여 병변의 조사 범위와 병변의 주변 부위에만 방사선이 집중 조사될 수 있도록 방사선의 세기를 조절할 수 있다.
- [0061] 한편, 도 2, 도 3 및 도 4를 참고하면 본 발명의 일 실시예에서 제어부(미도시)는 복수개의 차폐부재(31a, 33a, 35a, 37a, 39a)와 연결된 구동모터(27)를 제어함으로써 복수개의 차폐부재의 위치를 엑스선 튜브의 각도 변화, 병변의 위치 및 크기에 따라 조절할 수 있다.
- [0062] 본 발명의 일 실시예에서 디텍터(미도시)는 피검체(P)를 통과한 엑스선을 검출할 수 있다. 이때 디텍터는 가시 광선의 자연색을 다른 관점으로 보게 하는 디스플레이일 수 있다.
- [0063] 또한 디텍터는 엑스선을 가시광으로 변환한 뒤 이를 다시 전기신호로 변환하는 방식으로서 엑스선을 통해서 전 기적인 신호를 만들어내는 일종의 포토센서의 역할을 할 수 있다. 따라서 디텍터에 모니터를 연결하면 촬영된 영상을 볼 수 있다.
- [0064] 본 발명의 일 실시예에 따른 방사선 세기 변조장치를 포함하는 디지털 단층 영상 합성 시스템의 작동은 이하 설명한다.
- [0065] 먼저, 환자를 테이블 위에 눕히고 디지털 단층 영상 합성 시스템을 통해 흉부 단층영상 합성 촬영을 위하여 환자를 정자세로 한 후, 엑스선 튜브와 디텍터의 위치를 설정한다.
- [0066] 또한, 환자의 흉부 촬영용 사전 영상을 참조하여 목적 장기(피검체)의 윤곽을 설정한 후, 구동 모터(27)를 구동 하여 목적 장기 전체 윤곽을 포함하는 엑스선 조사 범위를 설정한다.
- [0067] 이때, 사전 영상과 비교하여 환자 자세 위치 변화에 따른 조사범위 오차를 고려하여 윤곽을 설정하고, 엑스선 조사범위는 중심으로부터 외측방향으로 갈수록 엑스선 차폐가 잘되는 물질을 계단식으로 위치시키도록 모터를 구동시킬 수 있다.
- [0068] 이를 통해 본 발명의 일 실시예에서 디지털 단층 영상 합성 시스템은 엑스선의 세기를 조절하여 병변의 주변 영역에는 최소한으로 조사되고 병변에만 집중 조사가 될 수 있도록 설정한다. 또한, 조사 범위 안에 보고자 하는 목적 장기 부분의 윤곽이 모두 포함되면 디지털 단층 영상 합성 시스템의 촬영을 종료한다.
- [0069] 이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한

되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.

부호의 설명

[0070] 1 : 디지털 단층 영상 합성 시스템 S1 : 병변 부위

S2 : 병변 주위 부분 10 : 방사선 발생장치

11 : 엑스선 튜브 13 : 엑스선 발생 지점

20 : 방사선 세기 변조 장치 21 : 하우징

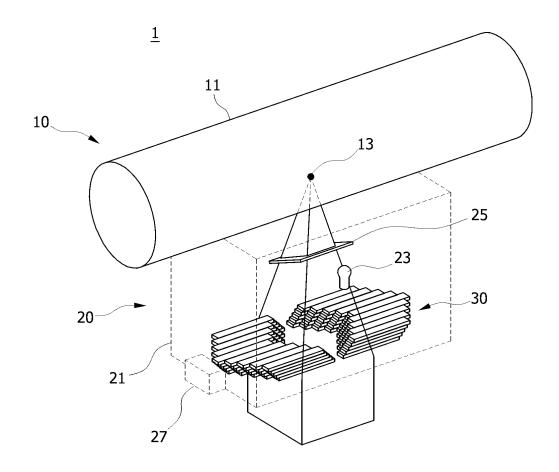
23 : 광원 25 : 반사경

27 : 구동 모터 30 : 세기 조절부

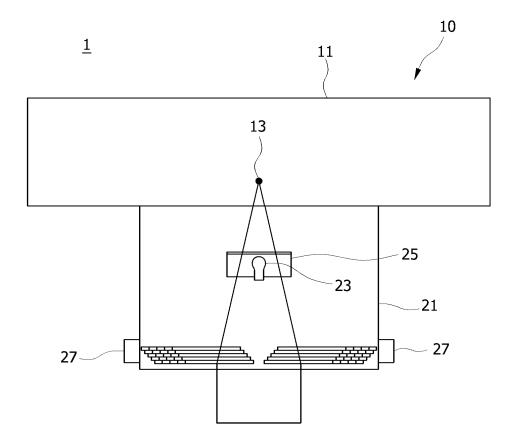
31 : 제1 차페층 31a : 제1 차페부재

33 : 제2 차페층 33a : 제2 차페부재

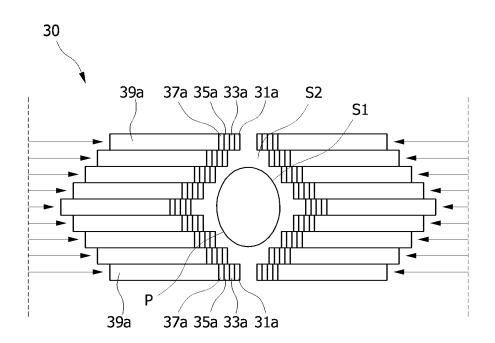
35 : 제3 차폐층 35a : 제3 차폐부재

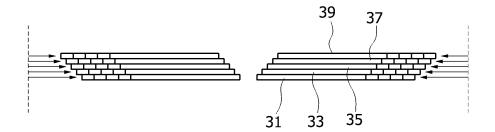

37 : 제4 차폐층 37a : 제4 차폐부재

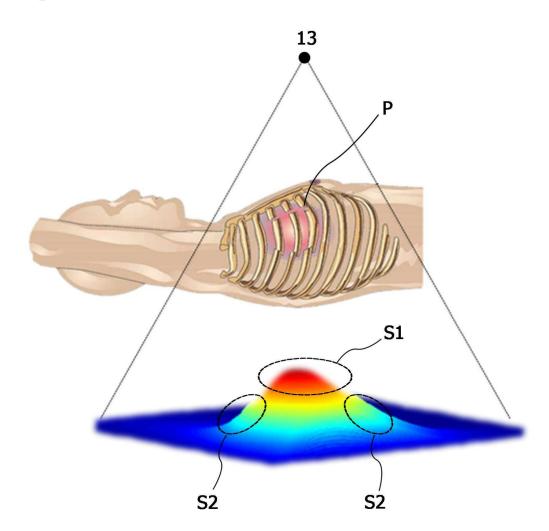
39 : 제5 차폐층 39a : 제5 차폐부재


P : 피검체

도면


도면1


도면2


도면3

도면4

도면5

