

(19) 대한민국특허청(KR) (12) 공개특허공보(A)

(11) 공개번호 10-2017-0010417(43) 공개일자 2017년01월31일

(51) 국제특허분류(Int. Cl.)

COTF 9/04 (2006.01) *COTF* 7/02 (2006.01) *COTF* 9/09 (2006.01)

(52) CPC특허분류 *COTF 9/04* (2013.01) *COTF 7/02* (2013.01)

(21) 출원번호 **10-2017-0003081(분할)**

(22) 출원일자 **2017년01월09일**

심사청구일자 없음

(62) 원출원 특허 10-2015-0030160

원출원일자 2015년03월04일 심사청구일자 2015년03월04일 (71) 출원인

연세대학교 원주산학협력단

강원도 원주시 흥업면 연세대길 1

(72) 발명자

이명의

서울특별시 송파구 중대로 24

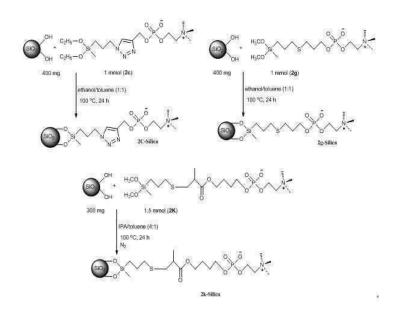
유뢰

Shandong province, Feicheng city, China, 271607

(74) 대리인

특허법인미주

전체 청구항 수 : 총 9 항


(54) 발명의 명칭 황-가교화된 알콕시실란화 포스포릴콜린의 제조방법

(57) 요 약

본 발명은 알케닐포스포릴콜린(alkenyl phosphorylcholine)을 티올-엔(thiol-ene) 클릭(click) 반응에 따라 하기 화학식 1로 표시되는 티올 화합물과 반응시켜 황-가교화된(sulfur-bridged) 알콕시실란화포스포릴콜린(alkoxysilanated phosphorylcholine)을 제조하는 방법에 관한 것으로서

(뒷면에 계속)

대 표 도 - 도3

[화학식 1]

$$R_3$$
 R_1
 Si
 CH_2
 M
 SH
 R_2

상기 화학식 1에서, R_1 , R_2 및 R_3 는 각각 수소, (C_1-C_6) 알콕시, 비치환된 (C_1-C_6) 직쇄 또는 분지쇄알킬, 치환된 (C_1-C_6) 직쇄 또는 분지쇄알킬, 할로겐, 하이드록실, 페닐 및 벤질로 이루어진 그룹으로부터 선택되고, R_1 , R_2 및 R_3 중 적어도 하나는 (C_1-C_6) 알콕시이고, m은 1 내지 7로부터 선택되는 정수이며, 본 발명에서는 구리(I)-촉매 및 티올-렌(thiol-ene) "클릭" 반응이 알콕시실란화 PC 모이어티를 합성하는 매우 간편하고 효율적인 방법을 제공한다는 점을 규명하였고, 총 12종의 알콕시실란화 PC를 매우 고수율로 수득할 수 있었으며, 본 발명에 따른 방법으로 수득된 알콕시실란화 PC가 표면 개질제로 사용될 수 있다는 점을 실험을 통해 규명하였으며, 또한 본 발명에서, 알콕시실란화 PC는 실리카비드 표면에 임플란트되었고, 로딩율을 정량함으로써 알콕시실란화 PC가 실리카비드 표면에 성공적으로 임플란트 되었다는 점을 규명하였다.

(52) CPC특허분류

CO7F 9/09 (2013.01)

명 세 서

청구범위

청구항 1

알케닐포스포릴콜린(alkenyl phosphorylcholine)을 티올-엔(thiol-ene) 클릭(click) 반응에 따라 하기 화학식 1로 표시되는 티올 화합물과 반응시켜 황-가교화된(sulfur-bridged) 알콕시실란화포스포릴콜린(alkoxysilanated phosphorylcholine)을 제조하는 방법:

[화학식 1]

$$R_3$$
 R_1
 Si
 CH_2
 M
 SH
 R_2

상기 화학식 1에서.

 R_1 , R_2 및 R_3 는 각각 수소, (C_1-C_6) 알콕시, 비치환된 (C_1-C_6) 직쇄 또는 분지쇄알킬, 치환된 (C_1-C_6) 직쇄 또는 분지쇄알킬, 할로겐, 하이드록실, 페닐 및 벤질로 이루어진 그룹으로부터 선택되고,

 R_1 , R_2 및 R_3 중 적어도 하나는 (C_1-C_6) 알콕시이며,

m은 1 내지 7로부터 선택되는 정수이다.

청구항 2

제1항에 있어서,

상기 알케닐포스포릴콜린은 알릴 포스포릴콜린 또는 2-메타크릴로일옥시에틸 포스포릴콜린(2-methacryloyloxyethyl phosphorylcholine)인 것을 특징으로 하는 황-가교화된(sulfur-bridged) 알콕시실란화포스포릴콜린(alkoxysilanated phosphorylcholine)을 제조하는 방법.

청구항 3

제2항에 있어서,

황-가교화된 알콕시실란화포스포릴콜린은 하기 화학식 2 또는 3인 것을 특징으로 하는 황-가교화된(sulfurbridged) 알콕시실란화포스포릴콜린(alkoxysilanated phosphorylcholine)을 제조하는 방법:

[화학식 2]

[화학식 3]

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$$

상기 화학식 2 또는 3에서,

 R_1 , R_2 및 R_3 는 각각 수소, (C_1-C_6) 알콕시, 비치환된 (C_1-C_6) 직쇄 또는 분지쇄알킬, 치환된 (C_1-C_6) 직쇄 또는 분지쇄알킬, 할로겐, 하이드록실, 페닐 및 벤질로 이루어진 그룹으로부터 선택되고,

 R_1 , R_2 및 R_3 중 적어도 하나는 (C_1-C_6) 알콕시이며,

m은 1 내지 7로부터 선택되는 정수이다.

청구항 4

제1항에 있어서,

 R_1 , R_2 및 R_3 중 적어도 하나는 메틸, 에틸, 메톡시 및 에톡시로 이루어진 그룹으로부터 선택되는 어느 하나인 것을 특징으로 하는 황-가교화된(sulfur-bridged) 알콕시실란화포스포릴콜린(alkoxysilanated phosphorylcholine)을 제조하는 방법.

청구항 5

제1항에 있어서,

 R_1 , R_2 및 R_3 중 적어도 두 개 이상은 메틸, 에틸, 메톡시 및 에톡시로 이루어진 그룹으로부터 선택되는 어느 하나인 것을 특징으로 하는 황-가교화된(sulfur-bridged) 알콕시실란화포스포릴콜린(alkoxysilanated phosphorylcholine)을 제조하는 방법.

청구항 6

제1항에 있어서,

m은 3인 것을 특징으로 하는, 황-가교화된(sulfur-bridged) 알콕시실란화포스포릴콜린(alkoxysilanated phosphorylcholine)을 제조하는 방법.

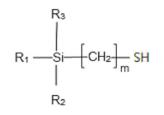
청구항 7

제1항에 따른 방법으로 제조된 황-가교화된 알콕시실란화포스포릴콜린을 하기 화학식 4의 화합물과 반응시켜, 개질된실리카를 제조하는 방법: [화학식 4]

청구항 8

제1항 내지 제6항 중 어느 한 항의 방법으로 제조된 황-가교화된(sulfur-bridged) 알콕시실란화포스포릴콜린 (alkoxysilanated phosphorylcholine) 화합물.

청구항 9


제7항의 방법으로 제조된 개질된 실리카 화합물.

발명의 설명

기술분야

[0001] 본 발명은 알케닐 포스포릴콜린(alkenyl phosphorylcholine)을 티올-엔(thiol-ene) 클릭(click) 반응에 따라하기 화학식 1로 표시되는 티올 화합물과 반응시켜 황-가교화된(sulfur-bridged) 알콕시실란화 포스포릴콜린 (alkoxysilanated phosphorylcholine)을 제조하는 방법에 관한 것으로서,

[0002] [화학식 1]

[0003]

[0004] 상기 화학식 1에서,

[0006] *R₁, R₂ 및 R₃는 각각 수소, (C₁-C₆) 알콕시, 비치환된 (C₁-C₆) 직쇄 또는 분지쇄 알킬, 치환된 (C₁-C₆) 직쇄 또는 분지쇄 알킬, 할로겐, 하이드록실, 페닐 및 벤질로 이루어진 그룹으로부터 선택되고,

[0007] R₁, R₂ 및 R₃ 중 적어도 하나는 (C₁-C₆) 알콕시이고,

[0008] m은 1 내지 7로부터 선택되는 정수이다.

배경기술

[0010] 포스포릴콜린(phosphorylchloine, PC) 유도체는 우수한 생체적합성, 혈액적합성(hemocompatiblity) 및 친수성으로 인하여 표면 개질제로 널리 사용되고 있다. 알콕시실란은 표면 특성을 개질하기 위한 효율적인 커플링제로서, PC 모이어티와 원하는 기재(substrate)를 연결하기 위해 사용될 수 있다. 포스포릴콜린(PC)은 Singer와 Nicolson에 의해 제안된 생체막 구조 모델인 유동 모자이크 모델로 정의되는 구조를 가진다. 헤드 그룹인 PC를 함유하는 인지질(phospholipid)은 모든 진핵세포막의 주요 컴포넌트이고, 모든 박테리아막의 최소 10%를 구성한다. 따라서 PC 유도체는 살아있는 기관 및 조직에 높은 친화력을 보이며 생체막의 구조로 널리 사용되어 오고 있고, 혈액-컨택트 디바이스, 생체모방막(bio-mimic membranes) 및 세포 부착을 저해하거나 바람직하지 않은 단백질 상호작용을 감소시키기 위한 표면 처치 등 다양한 의료적 목적으로 사용되기 위한 안티-파울링(anti-

fouling) 표면 개질제로 매우 우수한 물질이다.

- [0011] 응용재료과학 분야에서, 특정 표면의 물리적, 화학적 특성을 개질하는 것은 매우 중요하다. 표면 개질을 위한 통상의 방법들 중 하나는 알콕시- 또는 할로-실릴 기능화된 개질제를 메탈 옥사이드와 같은 하이드록실화 표면, 나노파티클 및 의료 디바이스에 임플란트하는 것이다.
- [0012] 촉매 없이 강한 Si-O 본드를 형성시키는 것은 기능기와 기재(substrate)를 연결하는데 특히 유용하다. 메톡시실 릴기를 갖는 의료용 디바이스의 개질을 위한 PC-함유 마크로분자를 합성하기 위한 노력이 있어왔다. 예를 들어 2-메타크릴로일옥시에틸포스포릴콜린(2-methacryloyloxyethylphosphorylcholine, MPC) 및 3-트리메톡시실릴프로필메타크릴레이트(MPS)의 공중합체가 라디칼 폴리머화를 통해 합성된다. MPS의 트리메톡시실릴기는 콘택트 렌즈상 부착력을 증진시키기 위한 커플링제로 작용한다.
- [0013] 3-머캅토프로필트리메톡시 실란은 MPC의 티올-엔(thiol-ene) 라디칼 광중합(photo-polymerization)을 개시하는 데 사용되는데, 트리메톡시실릴기는 엔드-블락커(end-blocker)로 작용하며 커플링제는 poly(MPC)가 Mg-Al-Zn 합 금에 코팅되도록 커플링시킨다. 응용을 위한 목적으로, PC-함유 마이크로분자는 우수한 개질 특성으로 인하여 큰 디바이스뿐만 아니라 나노-사이즈의 파티클에도 유용하게 사용되어왔다. 클로로-실란화 PC는 하이드록실화 표면 상 생체막을 구성하기 위하여 처음 제조되었다. 그러나 5단계 이상의 과정을 거쳐야 하고, 총 수율이 매우 낮아 제한적일 수밖에 없었다. 최근 메탄올 중에서 MPC와 트리메톡시실란을 Pt/C-촉매 하이드로실릴화 반응시킴 으로써 의료용 알로이의 개질을 위한 트리메톡시실란화 MPC를 효율적으로 합성하는데 사용되었다. 그러나 MPC를 트리알콕시실란과 유사하게 하이드로실릴화 반응시키는 경우, 원하는 생성물을 수득하지 못하였고, 이는 트리알 콕시실란이 Pt/C 또는 Karstedt 촉매 존재하에서 알킬 알코올과 반응하기 때문이었다. 따라서 Pt-촉매 하이드로 실릴화 반응은 알콕시실란화 PC의 제조에는 적합하지 않음을 알 수 있다.
- [0014] 메트알릴실란화 PC가 구리(I)-촉매 클릭반응을 통해 합성되고, 실리카 비드의 개질에 적용될 수 있다는 점을 본 발명자는 규명하였다. 다만 메톡시- 및 클로로-실란화 PC와 비교해 보았을 때, 메틸알릴실릴기는 트리플리산 (triflic acid) 존재하에서 개질제(modifier)로서 작용하기 위하여 활성화가 필요하다. 따라서 알콕시실릴기를 PC 모이어티에 결합하는 방법의 개발이 필요한 실정이다.

선행기술문헌

특허문헌

[0016] (특허문헌 0001) 미국등록특허 8,183,355호

(특허문헌 0002) 미국등록특허 8,623,928호

비특허문헌

- 1 Y. Iwasaki and K. Ishihara, Anal Bioanal Chem., 2005, 381, 534.
- 2 (a) X. F. Yu, Z. H. Liu, J. Janzen, I. Chafeeva, R. K. Kainthan and D. E. Brooks, Nat. Mater., 2012, 11, 468; (b) C. Sohlenkamp, I. López-Lara and O. Geiger, Lipid Res., 2013, 42, 115; (c) S. J. Singer and G. L. Nicolson, Science, 2008, 37, 65.
- 3 K. Ishihara, N. P. Ziats, B. P. Tierney, N. Nakabayashi and J. M. Anderson, J. Biomed Mater Res., 1991, 25, 1397.
- 4 K. Ishihara, H. Oshida, Y. Endo, A. Watanabe, T. Ueda and N. Nakabayashi, J. Biomed Mater Res., 1992, 26, 1543.
- 5 T. Goda, M. Tabata, M. Sanjoh, M. Uchimura, Y. Iwasaki and Y. Miyahara, *Chem. Comm.*, 2013, 49, 8683.
- 6 S. Shylesh, V. Schunemann and W. R. Thiel, Angew. Chem., Int. Ed., 2010, 49, 3428.
- 7 D. L. Meng, J. H. Sun, S. D. Jiang, Y. Zeng, Y. Li, S. K. Yan, J. X. Geng and Y. Huang, J. Mater. Chem., 2012, 22, 21583.
- 8 L. N. Xu, P. P. Ma, B. Yuan, Q. Chen, S. Lin, C. X. Chen, Z. C. Hua and J. Shen, RSC Adv., 2014, 4, 15030.
- 9 S. H. Ye, Y. S. Jang, Y. H. Yun, V. Shankarraman, J. R. Woolley, J. Hong, L. J. Gamble, K. Ishihara and W. R. Wagner, *Langmuir.*, 2013, **29**, 8320.
 - 10 A. A. Durrani, J. A. Hayward and D. Chapman, Biomaterials., 1986, 7, 121.
- 11 S. H. Ye, C. A. Jr Johnson, J. R. Woolley, H. Murata, L. J. Gamble, K. Ishihara and W. R. Wagner, Colloids Surf. B., 2010, 79, 357.
- 12 L. Liu, J. H. Song, M. E. Lee, Y. R. Han and C-H. Jun, Tetrahedron Lett., 2014, 55, 6245.
- 13 (a) V. V. Rostovtsev, L. G. Green, V. V. Fokin and K. B. Sharpless, Angew. Chem., Int. Ed., 2002, 41, 2596; (b) H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem., Int. Ed., 2001, 40, 2004.

[0017]

- 14 Q. Wang, T. R. Chan, R. Hilgraf, V. V. Fokin, K. B. Sharpless and M. G. Finn, J. Am. Chem. Soc., 2003, 125, 3192.
 - 15 A. E. Speers and B. F. Cravatt, Chem. Biol., 2004, 11, 535.
 - 16 A. J. Link and D. A. Tirrell, J. Am. Chem. Soc., 2003, 125, 11164.
- 17 G. Lligadas, J. C. Ronda, M. Galià and V. Cádiz, J. Polym. Sci., Part A: Polym. Chem., 2013, 51, 2111.
 - 18 Q. Zhang, H. Su, J. Luo and Y. Y. Wei, Catal. Sci. Technol., 2013, 3, 235.
 - 19 F. Gonzaga, G. Yu and M. A. Brook, Chem. Comm., 2009, 1, 1730.
- 20 Y. J. Zuo, H. F. Lu, L. Xue, X. M. Wang, L. Ning and S. Y. Feng, J. Mater. Chem. C., 2014, 2, 2724.
- 21 M. Zhang, P. A. Rupar, C. Feng, K. X. Lin, D. J. Lunn, A. Oliver, A. Nunns, G. R. Whittell, I. Manners and M. A. Winnik, *Macromolecules*, 2013, 46, 1296.
- 22 U. Y. Jung, J. W. Park, E. H. Han, S. G. Kang, S. R. Lee and C-H. Jun, Chem. Asian J., 2011, 6, 638.
- 23 (a) C. Rissing and D. Y. Son, Organometallics, 2009, 28, 3167; (b) K. L. Killops, L. M. Campos and C. J. Hawker, J. Am. Chem. Soc., 2008, 130, 5062; (c) K. Lorenz, H. Frey, B. Stuhn and R. Mulhaupt, Macromolecules, 1997, 30, 6860.
 - 24 O. Türünç and M. A. R. Meier, Eur. J. Lipid. Sci. Technol., 2013, 115, 41.
- 25 (a) A. Dondoni, Angew. Chem. Int. Ed., 2008, 47, 8995; (b) G. Franc and A. K. Kakkar, Chem. Soc. Rev., 2010, 39, 1536; (c) M. J. Kade, D. J. Burke and C. J. Hawker, J. Polym. Sci., Part A: Polym. Chem., 2010, 48, 743.
 - 26 R. A. Shiels and C. W. Jones, J. Mol. Catal. A: Chem., 2007, 261, 160-166.
 - 27 M. A. Cole, K. C. Jankousky and C. N. Bowman, Dent. Mater., 2014, 30, 449.
- 28 N. S. Bhairamadgi, S. Gangarapu, M. A. Caipa Campos, J. M. J. Paulusse, C. J. M. Rijn and H. Zuihof, *Langmuir*, 2013, **29**, 4535.
- 29 L. Liu, M. E. Lee, P. J. Kang and M-G. Choi, *Phosphorus, Sulfur Silicon Relat. Elem*, 2014, ID: GPSS-2014-0175.R1
- 30 S. Dayal, J. Li, Y. S. Li, H. Q. Wu, A. C. S. Samia, M. E. Kenney and C. Burda, *Photochem. Photobiol.*, 2008, 84, 243.

발명의 내용

해결하려는 과제

- [0018] 본 발명은 황-가교화된 알콕시실란화 포스포릴콜린을 구리(I)-촉매 및 티올-엔 클릭 반응을 통해 효율적이면서 도 간편하게 합성하는 방법을 제공하고자 한다.
- [0019] 본 발명은 또한 가혹하지 않은 조건 하에서 매우 고수율로 황-가교화된 알콕시실란화 포스포릴콜린을 제조하는 방법을 제공하고자 하며, 반응이 용이하게 스케일-업 될 수 있는 방법을 제공하고자 한다.
- [0020] 본 발명은 또한 상기 방법으로 제조된, 활성이 높은 표면 개질제를 제공하고자 한다.

과제의 해결 수단

- [0021] 본 발명은 알케널 포스포릴콜린(alkenyl phosphorylcholine)을 티올-엔(thiol-ene) 클릭(click) 반응에 따라 하기 화학식 1로 표시되는 티올 화합물과 반응시켜 황-가교화된(sulfur-bridged) 알콕시실란화 포스포릴콜린 (alkoxysilanated phosphorylcholine)을 제조하는 방법에 관한 것이다:
- [0022] [화학식 1]

$$R_1$$
 R_1
 Si
 CH_2
 M
 SH
 R_2

- [0023]
- [0024] 상기 화학식 1에서,
- [0025] R₁, R₂ 및 R₃는 각각 수소, (C₁-C₆) 알콕시, 비치환된 (C₁-C₆) 직쇄 또는 분지쇄 알킬, 치환된 (C₁-C₆) 직쇄 또는 분지쇄 알킬, 할로겐, 하이드록실, 페닐 및 벤질로 이루어진 그룹으로부터 선택되고,
- [0026] R₁, R₂ 및 R₃ 중 적어도 하나는 (C₁-C₆) 알콕시이며,
- [0027] m은 1 내지 7로부터 선택되는 정수이다.

발명의 효과

- [0029] 본 발명에서는 구리(I)-촉매 및 티올-엔(thiol-ene) "클릭" 반응이 알콕시실란화 PC 모이어티를 합성하는 매우 간편하고 효율적인 방법을 제공한다는 점을 규명하였다.
- [0030] 또한 본 발명에 따른 방법을 사용함으로써, 총 12종의 알콕시실란화 PC를 매우 고수율로 수득할 수 있었고, 본 발명에 따른 방법으로 수득된 알콕시실란화 PC가 표면 개질제로 사용될 수 있다는 점을 실험을 통해 규명하였다.
- [0031] 또한 본 발명에서, 알콕시실란화 PC는 실리카 비드 표면에 임플란트되었고, 로딩율을 정량함으로써 알콕시실란화 PC가 실리카 비드 표면에 성공적으로 임플란트되었다는 점을 규명하였다.

도면의 간단한 설명

[0033] 도 1은 트리아졸-가교화된 알콕시실란화 포스포릴콜린을 합성하는 방법을 나타낸 것이다.

도 2는 황-가교화된 알콕시실란화 포스포릴콜린 (2e-21)을 합성하는 방법을 나타낸 것이다.

도 3은 알콕시실란화 포스포릴콜린을 이용하여 실리카 표면을 개질한 예를 나타낸 것이다.

발명을 실시하기 위한 구체적인 내용

[0034] 본 발명은 알케닐 포스포릴콜린(alkenyl phosphorylcholine)을 티올-엔(thiol-ene) 클릭(click) 반응에 따라 하기 화학식 1로 표시되는 티올 화합물과 반응시켜 황-가교화된(sulfur-bridged) 알콕시실란화 포스포릴콜린 (alkoxysilanated phosphorylcholine)을 제조하는 방법에 관한 것이다: [0035] [화학식 1]

$$R_1$$
 R_2
 R_3
 R_4
 R_5
 R_7

[0036] [0037]

상기 화학식 1에서,

[0038] R₁, R₂ 및 R₃는 각각 수소, (C₁-C₆) 알콕시, 비치환된 (C₁-C₆) 직쇄 또는 분지쇄 알킬, 치환된 (C₁-C₆) 직쇄 또는 분지쇄 알킬, 할로겐, 하이드록실, 페닐 및 벤질로 이루어진 그룹으로부터 선택되고,

[0039] R₁, R₂ 및 R₃ 중 적어도 하나는 (C₁-C₆) 알콕시이며,

[0040] m은 1 내지 7로부터 선택되는 정수이다.

[0042] 본 발명의 일 양태에서, 상기 알케닐 포스포릴콜린은 알릴 포스포릴콜린 또는 2-메타크릴로일옥시에틸 포스포릴 콜린(2-methacryloyloxyethyl phosphorylcholine)인 것을 특징으로 하는 황-가교화된(sulfur-bridged) 알콕시 실란화 포스포릴콜린(alkoxysilanated phosphorylcholine)을 제조하는 방법이 제공된다.

[0043] 본 발명의 일 양태에서, 황-가교화된 알콕시실란화 포스포릴콜린은 하기 화학식 2 또는 3인 것을 특징으로 하는 황-가교화된(sulfur-bridged) 알콕시실란화 포스포릴콜린(alkoxysilanated phosphorylcholine)을 제조하는 방법이 제공된다:

[0044] [화학식 2]

$$-N^{+}$$
 O^{-}
 $O^{$

[0045]

[0046] [화학식 3]

$$N^{+}$$
 O P O O O S CH_{2} M Si R_{2} R_{1}

[0047]

[0048] 상기 화학식 2 또는 3에서,

[0049] R₁, R₂ 및 R₃는 각각 수소, (C₁-C₆) 알콕시, 비치환된 (C₁-C₆) 직쇄 또는 분지쇄 알킬, 치환된 (C₁-C₆) 직쇄 또는 분지쇄 알킬, 할로겐, 하이드록실, 페닐 및 벤질로 이루어진 그룹으로부터 선택되고,

[0050] R₁, R₂ 및 R₃ 중 적어도 하나는 (C₁-C₆) 알콕시이고,

[0051] m은 1 내지 7로부터 선택되는 정수이다.

- [0053] 본 발명의 일 양태에서, R₁, R₂ 및 R₃ 중 적어도 하나는 메틸, 에틸, 메톡시 및 에톡시로 이루어진 그룹으로부터 선택되는 어느 하나인 것을 특징으로 하는 황-가교화된(sulfur-bridged) 알콕시실란화 포스포릴콜린 (alkoxysilanated phosphorylcholine)을 제조하는 방법이 제공된다.
- [0054] 본 발명의 일 양태에서, R₁, R₂ 및 R₃ 중 적어도 두 개 이상은 메틸, 에틸, 메톡시 및 에톡시로 이루어진 그룹으로부터 선택되는 어느 하나인 것을 특징으로 하는 황-가교화된(sulfur-bridged) 알콕시실란화 포스포릴콜린 (alkoxysilanated phosphorylcholine)을 제조하는 방법이 제공된다.
- [0055] 본 발명의 일 양태에서, n은 3인 것을 특징으로 하는, 황-가교화된(sulfur-bridged) 알콕시실란화 포스포릴콜린 (alkoxysilanated phosphorylcholine)을 제조하는 방법이 제공된다.
- [0056] 본 발명의 일 양태에서, m은 3인 것을 특징으로 하는, 황-가교화된(sulfur-bridged) 알콕시실란화 포스포릴콜린 (alkoxysilanated phosphorylcholine)을 제조하는 방법이 제공된다.
- [0057] 본 발명은 또한 상기 방법으로 제조된 황-가교화된 알콕시실란화 포스포릴콜린을 하기 화학식 4의 화합물과 반응시켜, 개질된 실리카를 제조하는 방법에 관한 것이다:
- [0058] [화학식 4]

- [0059]
- [0060] 본 발명은 또한, 상기 방법으로 제조된 황-가교화된(sulfur-bridged) 알콕시실란화 포스포릴콜린 (alkoxysilanated phosphorylcholine) 화합물을 제공한다.
- [0061] 본 발명은 또한 상기 방법으로 제조된 제조된 개질된 실리카 화합물을 제공한다.
- [0062] 알려진 바와 같이, 구리(I)-촉매를 이용한 말단 알킨 및 유기 아자이드의 결합으로, 매우 넓은 범위로 정교하게 선택적으로 1,2,3-트리아졸이 수득될 수 있다.
- [0063] 도 1은 트리아졸-가교화된 알콕시실란화 PC(2a-2d)를 합성하는 데 구리(I)-촉매 클릭반응이 어떻게 사용될 수 있는지를 보여준다.
- [0065] 이하 본 발명에 대하여 실시예를 통해 보다 자세히 설명한다. 다만 하기 실시예는 본 발명의 이해를 돕기 위한 것이지 본 발명의 권리범위가 이로 한정되는 것을 의도하지 않는다.

[0067] 실시예 1. 트리아졸-가교화된 알콕시실란화 포스포릴콜린의 합성

- [0068] 우선, 3-아지도프로필알콕시실란(1a-1d, 표 1)을 구입 가능한 3-클로로프로필알콕시실란으로부터 합성하고, 프로파질포스포릴콜린(propargylphosphorylcholine, PPC)을 합성하였다. 등몰의 3-아지도프로필알콕시실란 및 PPC (1 mmol)를 CuI/DIPEA (2 mmol/4 mmol) 존재 하에서 혼합하였다. 그 후 반응물을 아르곤 존재 하에서 에탄올에 용해시켰다. 에탄올 (5 mL)에서 반응시키되 60℃에서 12시간 동안 반응을 시켰다.
- [0069] 표1을 보면, 아자이드(1a-1d)가 PPC와 커플링되어 알콕시실란화 PC가 생성됨을 알 수 있다. 최종 생성물을 정제하기 위하여 구리(I) 촉매를 질소 조건 하에서 여과하였다. 감압 하에서 용매를 제거한 후, 잔사를 무수 헥산으로 몇 번 세척하였다. 최종적으로 타겟 생성물(2a-2d)를 연노란색 분말의 형태로 수득하였고, 수율은 90~92%였다.
- [0070] (다음 표 1은 트리아졸-가교화된 알콕시실란화 포스포릴콜린(2a-2d)을 나타낸 것임)

丑 1

Entry	Azido-silanes	Products				
1	(MeO) ₈ Si(CH ₂) ₈ N ₈ (1a)	OCH ₃ SI OCH ₃ OCH ₃ OCH ₃ 2a				
2	(EtO) ₈ Si(CH ₂) ₈ N ₈ (1b)	OC ₂ H ₅ OC ₂ H				
3	(EtO)sSi(CH2)s Ns (1c)	OC ₂ H ₅				
4	(EtO)Me ₂ Si(CH ₂) ₅ N ₅ (1d)	N N N SI OC ₂ H ₅				

[0072]

[0073] 한편 라디칼-베이스 티올-엔 반응이 알콕시실란화 PC에 대한 또 다른 접근법이라는 점을 알 수 있었다. 이러한 반응은 덴드리머, 기능화된 바이오분자, 바이오마크로분자 및 리소그래피부터 다공성 마이크로파티클을 아우르는 범위에 적용되기 위한 신규 폴리머 물질을 합성하는 데 광범위하게 사용되어왔다. 상기 반응은, 클릭 반응패밀리의 또 다른 멤버로, 티올을 알켄(alkene)에 부가하는 것을 수반한다. 티올-엔 반응은 실온에서 마일드한 조건 하에서 수행되며, 위치선택성이 있고(regioselective), 다수 기능성기에 저항성이 있으며, 반응이 깔끔하게 진행되고, 정량적인, 또는 거의 정량적인 수율로 간편하게 수득되고, 크로마토그래피 등을 통한 정제과정이 불필요하다는 장점이 있다. 유기-실리콘 화학분야에서, 본 방법은 기능화된 실란, 실리콘 엘라스토머릭 물질 및 옥사이드-free 실리콘 표면을 합성하는 데 유용한 방법임이 입증되었다. 따라서 티올-엔 반응은 알콕시실란화 PC의 합성에 적합할 수 있다.

[0075] 실시예 2. 황-가교화된 알콕시실란화 PC의 합성

[0076] 알케닐 포스포릴콜린, 예컨대 2-메타크릴로일옥시에틸포스포릴콜린(2-methacryloyloxyethylphosphorylcholin, MPC) 및 알릴포스포릴콜린(APC)을 제조하였다. 그 다음 도 2에 나타낸 바와 같이 300-nm UV 램프 하에서 벤조페논이 개시되게 하는 티올-엔클릭 반응을 통해 황-가교화된 알콕시실란화 PC(2e-21)을 합성하였다. 살짝 과량의 3-머캅토프로필 알콕시실란(1e-11, 1.10 mmol) 및 알케닐 PC (1 mmol)을 2 mol%의 벤조페논이 존재하, 2 mL 에 탄올(EtOH)에 용해시킨 후 실온에서 아르곤 기체 하 15분 간 반응시켰다.

[0077] 표 2는 티올-엔 반응에 의해 머캅토-실란이 선택적으로 위치한 것을 보여준다. 감압 하 용매를 제거한 후, 생성물(2e-21) 잔사를 헥산으로 세척하여 미반응 3-머캅토프로필 알콕시실란 및 벤조페논을 제거하였다. 최종 생성물이 연노란색 분말의 형태로 정량적인 수율로 수득되었다. 이는 MPC 상의 아크릴로일기가 APC 상의 비닐기보다더 반응성이 높아, 더 짧은 반응시간이 MPC의 티올-엔 반응에 사용되었기 때문인 것으로 보인다. (다음 표 2는황-가교화된 알콕시실란화 PC (2e-21)을 나타낸 것임)

丑 2

Entry	Mercapto-silanes	Products
5	(EtO) ₈ Si(CH ₂) ₈ SH (1e)	OC ₂ H ₅ OC ₂ H
6	(MeO) ₈ Si(CH ₂) ₈ SH (1f)	OCH ₃ SI—OCH ₃ I OCH ₃ 2f
7	(MeO)2MeSi(CH2)6SH (1g)	N SI-OCH ₃ 2g
8	(MeO)Me ₂ Si(CH ₂) ₈ SH (1h)	N Si-och ₁
9	(EtO) ₀ Si(CH ₂) ₀ SH (11)	C3H50-S1
10	(MeO) ₀ Si(CH ₂) ₀ SH (1 j)	H,CO — SI OOH; S OO O
11	(MeO) ₂ MeSi(CH ₂) ₈ SH (1k)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
12	(MeO)Me ₂ Si(CH ₂) _e SH (11)	H,CO-SI S S S S S S S S S S S S S S S S S S

 $^{\circ}$ 1e-1g are commercially availble. 1h was synthesized from 1f according to the reported method. $^{\circ}$ 0

[0080] 제조예 1. 실리카 비드 상 알콕시실란화 PC의 로딩

[0079]

[0081]

모든 알콕시실란화 PC가 표면 개질제로 유용하다는 점을 증명하기 위하여, 도3에 나타낸 바와 같이, 실리카 비드 상에 이들을 임플란트시켰다. 알콕시실란화 PC (1 mmol) 및 실리카 비드 (400 mmg)을 20 mL IPA/톨루엔 (10 mL/ 10 mL) 혼합액 중에 분산시켰다. 이를 질소 조건 하 90℃로 24시간 동안 가열한 후, 개질된 실리카를 여과하고, 에탄올 및 톨루엔으로 세척하고 진공 오븐에서 24시간 동안 건조시켰다. 실리카 비드 상 알콕시실란화 PC의 로딩율을 측정한 결과는 다음 표3에 나타낸 바와 같다. (알콕시실란화 PC의 로딩율은 원소분석에 의해 분석된 개질된 실리카의 N 밸류에 기초하여 결정된 것이다. [예를 들어 2j 개질된 실리카 2j-실리카의 로딩율은 (C%) 9.0929, N(%) 0.8921) = (0.8921 × 10⁻² g of N/1 g of compound PC-modified silica **2j-silica**) × (10³ mmol of N/14 g of N) × (1 mmol of **2j**/1 mmol of N) = 0.63 mmol **2j**/1 g of compound PC-modified **2j-silica**.로 계산할 수 있음] (하기 표 3은 실리카 비드 상 알콕시실란화 PC(2a-21)의 로딩율을 나타낸 것임)

丑 3

Product	2a	2b	2c	2d	2e	2f	2g	2h	21	2j	2k	21
Loading												
rate	0.44	0.38	0.31	0.34	0.52	0.61	0.40	0.42	0.55	0.63	0.42	0.43

[0083]

[0085]

[0087]

[0084] 수득된 개질된 실리카를 원소분석(element analysis)으로 분석하였다. 표 3을 보면 알 수 있듯이 질소 원소분석을 통해 분석된 알콕시실란화 PC의 로딩율은 0.31 ~ 0.63 mmol/g으로 나타났다. 메톡시-실란화 개질제는 에톡시-실란화 개질제보다 더 활성이 높고, 트리메톡시기가 더 높은 반응 포인트를 생성하고, 로딩율이 더 높았다.

또한, 로딩율은 실란 테일(silane tail)의 입체장해에 영향을 받았다. 알콕시실릴프로필 트리아졸릴 PC 테일(2a-2d)은 입체장해가 가장 컸으며, 알콕시실릴프로필티올화 메틸 이소부티레이티드 PC 테일(2i-2l)의 입체장해에 따른 영향이 알콕시실릴프로필티올화 에틸렌 PC 테일(2i-2l)의 입체장해에 따른 영향보다 더욱 확연한 것으로 나타났다. 그러나 동일한 "가교화"를 가진 실란화 PC의 경우, 모노-알콕시 실란화 PC는 디-알콕시 실란화 PC보다 예를 들어 2c (0.31 mmol/g) < 2d (0.34 mmol/g)정도의 근소하게 높은 로딩율을 나타냈다. 이는 디-알콕시기가 모노-알콕시기보다 더 강한 입체장해 효과를 나타내기 때문인 것으로 보인다. 실리카의 표면 개질 여부를 보다 확인하기 위하여, 몇몇 개질된 실리카 비드의 표면 원소 컴포지션을 XPS로 분석하였다. 예를 들어, 표4를 보면 원소 표면 조성의 비율은 0.62/2.85/13.36으로 분석되었고, 개질된 실리카 상 P/N/C 비율은 1.0/4.5/21.5로 분석되었으며, 이는 이론치(1/4.0/20)과 유사하였다. 상기 결과를 통해 PC 모이어티가 실리카 상에 성공적으로 고정화되었음을 알 수 있다.

표 4 알콕시실란화 PC-개질된 실리카의 표면 원소 컴포지션

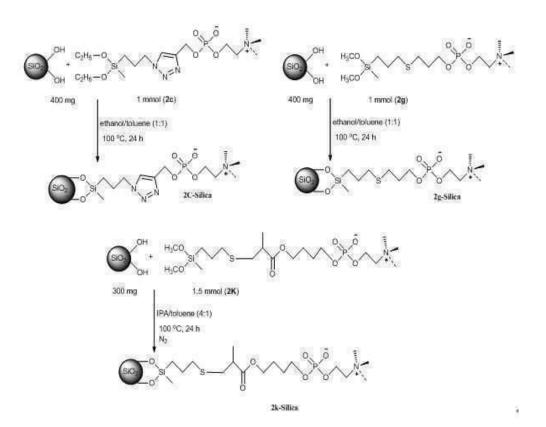
Modified silica	0(%)	Si(%)	C(%)	N(%)	P(%)	S(%)
2b-silica	53.32	29.85	13.36	2.85	0.62	
2e-silica	52.20	29.75	18.35	0.82	0.90	0.86
2f-silica	51.96	29.50	17.95	1.32	1.46	1.44
2g-silica	50.79	28.78	17.65	1.15	1.32	1.12
2h-silica	53.36	30.76	19.68	0.68	0.69	0.64
2j-silica	54.69	28.60	16.90	1.26	1.36	1.31

[0088] [결론]

[0089] 트리아졸- 또는 황-가교화된 알콕시실란화 포스포릴콜린이 구리(I)-촉매 및 티올-엔 클릭 반응을 통해 매우 효율적이면서도 간편하게 합성될 수 있음을 알 수 있다. 본 발명에 따른 방법을 사용하는 경우 가혹하지 않은 조건 하에서 매우 고수율로 수득할 수 있고, 반응이 용이하게 스케일-업 될 수 있는 것으로 나타났다. 합성된 알콕시실란화 PC는 실리카 비드 상에 고정화됨으로써 활성이 높은 표면 개질제라는 점을 실험결과를 통해 알 수있었다. 본 발명에 따른 방법은 혈액-컨택트 컨디션 및 생체모방 시스템에 적용되기 위한 PC-함유 실리콘 물질을 개발하는 데 있어 적합한 기술이다.

도면

도면1


$$\begin{array}{c} \text{CICH}_2\text{CH}_2\text{Si}(\text{OR})_{3\text{-n}}R_n & \text{NaN}_3 & \\ \hline 70\text{-100}^{\circ}\text{C} & \text{N_3}\text{CH}_2\text{CH}_2\text{Si}(\text{OR})_{3\text{-n}}R_n \\ \hline \\ \text{N_3}\text{CH}_2\text{CH}_2\text{Si}(\text{OR})_{3\text{-n}}R_n + \\ \hline \\ \text{1a-1d} & \text{OPO} & \text{NaN}_3 & \text{OPO} \\ \hline \\ \text{1a-1d} & \text{OPO} & \text{NaN}_3 & \text{OPO} \\ \hline \\ \text{1a-2d} & \text{OPO} & \text{NaN}_3 & \text{OPO} \\ \hline \\ \text{2a-2d} & \text{OPO} & \text{OPO} \\ \hline \end{array}$$

Where R and n are dependent on selected silanes shown in Table 1.

도면2

where R and n are dependent on selected silanes shown in Table 2.

도면3

