

(19) 대한민국특허청(KR)

(12) 공개특허공보(A)

(51) 국제특허분류(Int. Cl.)

HO4B 7/14 (2006.01) **HO4H 20/02** (2008.01)

(21) 출원번호

10-2012-0148340

(22) 출원일자

2012년12월18일

심사청구일자 없음

(11) 공개번호 10-2014-0078965

(43) 공개일자 2014년06월26일

(71) 출원인

연세대학교 산학협력단

서울특별시 서대문구 연세로 50, 연세대학교 (신 촌동)

(72) 발명자

김동구

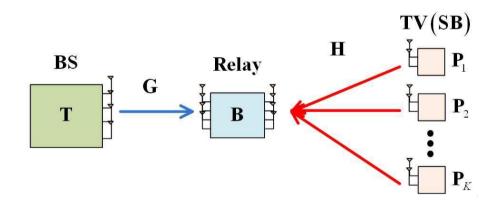
서울 강남구 일원로 120, 103동 1104호 (일원동, 샘터마을아파트)

조영민

서울 서대문구 연희로18안길 4, 401호 (연희동, 연세빌리지)

(74) 대리인

최관락, 송인호, 민영준


전체 청구항 수 : 총 3 항

(54) 발명의 명칭 양방향 중계기 방송 통신 시스템 설계 방법

(57) 요 약

양방향 중계기 방송 통신 시스템 설계 방법이 개시된다. 개시된 방법은, 양방향 중계기에 의해 신호가 중계되는 방송 시스템에서 송신기 및 다수의 수신기가 중계기로 신호를 전송하는 모드에서의 송신기 프리코더 및 중계기수신 필터 설계 방법으로서, 수신기 프리코더를 임의로 설정하는 단계(a); 중계기와 수신기 링크들의 가상 SINR을 설정하는 단계(b); 상기 가상 SINR이 모두 같은 값을 가지도록 송신기 프리코더의 파워 로딩 파트를 결정하는 단계(c); 상기 송신기 프리코더의 파워 로딩 파트에 기초하여 송신기 프리코더를 결정하는 단계(d); 및 상기 송신기 프리코더에 기초하여 중계기 수신 필터를 결정하는 단계(e)를 포함한다. 개시된 방법에 의하면, 양방향 중계기를 사용하면서 최소 전송률을 최대화할 수 있어 양호한 방송 시스템 설계가 가능하다

대 표 도 - 도1

이 발명을 지원한 국가연구개발사업

과제고유번호 1415123227 부처명 지식경제부

연구사업명 대학 IT연구센터 육성지원 연구과제명 디지털 방송장비 연구

기 여 율 1/1

주관기관연세대학교 산학협력단연구기간2010.06.01 ~ 2013.12.31

특허청구의 범위

청구항 1

양방향 중계기에 의해 신호가 중계되는 방송 시스템에서 송신기 및 다수의 수신기가 중계기로 신호를 전송하는 모드에서의 송신기 프리코더 및 중계기 수신 필터 설계 방법으로서.

수신기 프리코더를 임의로 설정하는 단계(a);

중계기와 수신기 링크들의 가상 SINR을 설정하는 단계(b);

상기 가상 SINR이 모두 같은 값을 가지도록 송신기 프리코더의 파워 로딩 파트를 결정하는 단계(c);

상기 송신기 프리코더의 파워 로딩 파트에 기초하여 송신기 프리코더를 결정하는 단계(d); 및

상기 송신기 프리코더에 기초하여 중계기 수신 필터를 결정하는 단계(e)를 포함하는 것을 특징으로 하는 양방향 중계기 방송 통신 시스템 설계 방법.

청구항 2

제1항에 있어서,

상기 송신기의 프리코더 및 중계기 수신 필터는 신호공간정렬 조건을 만족하도록 결정되는 것을 특징으로 하는 양방향 중계기 통신 시스템 설계 방법.

청구항 3

양방향 중계기에 의해 신호가 중계되는 방송 시스템에서 송신기 및 다수의 수신기가 중계기로부터 신호를 수신 하는 모드에서의 송신기 수신필터 및 중계기 프리코더 설계 방법으로서,

수신기와의 채널(H)을 이용하여 H[→]를 중계기 프리코더로 결정하는 단계(a); 및

상기 결정된 중계기 프리코더를 이용하여 MMSE 수신기로 동작하도록 송신기 수신 필터 및 수신기 수신 필터를 결정하는 단계를 포함하는 것을 특징으로 하는 양방향 중계기 방송 통신 시스템 설계 방법.

명세서

기술분야

[0001] 본 발명의 실시예들은 방송 통신 시스템에 관한 것으로서, 더욱 상세하게는 양방향 중계기를 사용하는 방송 통신 시스템의 설계 방법에 관한 것이다.

배경기술

- [0002] MIMO 및 중계기 기술은 차세대 네트워크의 성능 향상을 위한 핵심 기술로 그 가능성과 가치를 인정받고 있다. 하지만, 중계기는 dual-hop 전송에 의해 전송률이 절반으로 감소하는 문제점이 내재되어있다.
- [0003] 이와 같은 전송률 감쇄 현상을 극복하기 위해서, full-duplex 중계기, 양방향 중계기 등 새로운 방식의 중계기 가 중요한 연구 주제로 다루어지고 있다. 그 중에서, 양방향 중계기는 두개의 송신노드 A, B가 서로 상대를 향해 데이터를 전송하는 네트워크에서, A와 B 의 중간에 위치하면서 양방향의 전송이 동시에 이루어질 수 있도록하는 중계기이다.
- [0004] .A에서 B, B에서 A로의 각 단방향 송수신은 Half-duplex로 동작하지만 이와 같은 Half-duplex 송수신이 두 방향에서 동시에 이루어지므로 전송률이 두 배가 되기 때문에, 0.5의 전송률 감쇄가 상쇄되는 효과를 얻게 된다. 최근에는, 모든 노드에 다중 안테나가 설치된 상황에서 양방향 중계기와 노드 A, B에서의 프리코더 설계 문제에 관한 연구가 활발히 이루어지고 있다.
- [0005] 이와 같은 양방향 중계기의 실제 적용 모델에는 여러가지가 있다. 그 중 최근 화두가 되고 있는 디지털 TV 방송

시스템에서 DTV로부터 방송 기지국에 역방향채널(상향링크채널)을 생성하는데, 양방향 중계기 모델을 직접적으로 연관시킬 수 있다. 최근 방송 시스템은 다중 안테나를 기본으로 탑재하고 있으므로 다중 안테나 양방향 중계기 모델이 적합하다고 할 수 있다. 이 경우, 노드 A는 방송 기지국, 노드 B는 여러개의 DTV로 모델링된다.

- [0006] 방송 시스템은 일반적인 통신 시스템과는 달리 DTV에 동일한 데이터가 전송되므로, 하향링크들의 전송률의 합으로 그 성능을 평가하지는 않으며 다수의 하향링크 전송률 중 최저의 전송률을 성능을 평가하는 기준으로 삼고 있다.
- [0007] 따라서, 최소 전송률을 최대화하기 위한 방송 통신 시스템 설계가 요구되고 있다.

발명의 내용

해결하려는 과제

[0008] 상기한 바와 같은 종래기술의 문제점을 해결하기 위해, 본 발명에서는 최소 전송률을 최대화할 수 있는 양방향 중계기를 사용하는 방송 통신 시스템 설계 방법을 제안한다.

과제의 해결 수단

- [0009] 상기한 목적을 달성하기 위해 본 발명의 바람직한 일 실시예에 따르면, 양방향 중계기에 의해 신호가 중계되는 방송 시스템에서 송신기 및 다수의 수신기가 중계기로 신호를 전송하는 모드에서의 송신기 프리코더 및 중계기수신 필터 설계 방법으로서, 수신기 프리코더를 임의로 설정하는 단계(a); 중계기와 수신기 링크들의 가상 SINR을 설정하는 단계(b); 상기 가상 SINR이 모두 같은 값을 가지도록 송신기 프리코더의 파워 로딩 파트를 결정하는 단계(c); 상기 송신기 프리코더의 파워 로딩 파트에 기초하여 송신기 프리코더를 결정하는 단계(d); 및 상기송신기 프리코더에 기초하여 중계기 수신 필터를 결정하는 단계(e)를 포함하는 양방향 중계기 방송 통신 시스템설계 방법이 제공된다.
- [0010] 상기 송신기의 프리코더 및 중계기 수신 필터는 신호공간정렬 조건을 만족하도록 결정된다.
- [0011] 본 발명의 다른 측면에 따르면, 양방향 중계기에 의해 신호가 중계되는 방송 시스템에서 송신기 및 다수의 수신 기가 중계기로부터 신호를 수신하는 모드에서의 송신기 수신필터 및 중계기 프리코더 설계 방법으로서, 수신기 와의 채널(H)을 이용하여 H[†]를 중계기 프리코더로 결정하는 단계(a); 및 상기 결정된 중계기 프리코더를 이용하여 MMSE 수신기로 동작하도록 송신기 수신 필터 및 수신기 수신 필터를 결정하는 단계를 포함하는 양방향 중계기 방송 통신 시스템 설계 방법이 제공된다.

발명의 효과

[0012] 본 발명에 따르면, 양방향 중계기를 사용하면서 최소 전송률을 최대화할 수 있어 양호한 방송 시스템 설계가 가능하다.

도면의 간단한 설명

[0013] 도 1은 본 발명의 일 실시예에 따른 송수신기 설계 방법이 적용되는 양방향 중계기를 이용하는 방송 시스템에서 중게기가 송신기와 수신기로부터 신호를 수신하는 페이즈인 제1 페이즈를 도시한 도면.

도 2는 본 발명의 일 실시예에 따른 송수신기 설계 방법이 적용되는 양방향 중계기를 이용하는 방송 시스템에서 중게기가 송신기와 수신기에 신호를 전송하는 페이즈인 제2 페이즈를 도시한 도면.

도 3은 본 발명의 일 실시예에 따라 각 디멘션별로 다운스트림 신호 및 업스트림 신호에 대해 신호 공간 정렬이 이루어진 일례를 표로 나타낸 도면.

발명을 실시하기 위한 구체적인 내용

[0014] 본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어 야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.

- [0015] 이하에서, 본 발명에 따른 실시예들을 첨부된 도면을 참조하여 상세하게 설명한다.
- [0016] 도 1은 본 발명의 일 실시예에 따른 송수신기 설계 방법이 적용되는 양방향 중계기를 이용하는 방송 시스템에서 중게기가 송신기와 수신기로부터 신호를 수신하는 페이즈인 제1 페이즈를 도시한 도면이다.
- [0017] 도 1을 참조하면, 송신기(BS), 중계기(B) 및 다수의 수신기(TV)가 구비되며 다수의 수신기는 디지털 TV이다. 본 발명의 중계기(B)는 송신기 방향 및 수신기 방향으로의 양방향 송수신이 가능한 중계기이다.
- [0018] 도 1에 도시된 제1 페이즈에서, 송신기(BS)는 채널 G를 통해 송신기(BS)로부터 신호를 수신하며, 채널 H를 통해 수신기들(TV)로부터 신호를 수신한다.
- [0019] 기지국과 중계기, 각 수신기의 안테나의 개수는 각각 , ,그리고 로 표시한다.
- [0020] 방송 시스템은 모든 디지털 TV에 동일한 데이터가 전송되므로 일반적인 통신 시스템과는 달리 하향링크들의 전송률의 합을 통해 성능을 측정하지 않으며 다수의 하향링크 전송률 중 최저의 전송률이 성능의 기준이 된다.
- [0021] 본 발명에서는 이와 같은 성능 기준을 만족하도록 제1 페이즈에서 송신기(BS)의 프리코더(T) 및 제1 페이즈에서 수신기로 동작하는 중계기의 수신 필터(B)를 설계하는 방법을 제안한다.
- [0022] 제1 페이즈에서 신호 공간 정렬(Signal Apace Alignment)이 이용되며, 신호 공간 정렬은 다운스트림의 각 신호 들과 업스트림의 각 신호들을 서로 하나씩 짝을 지어서 한 디멘션(Dimension)에 포개서 넣는 방법을 의미한다.
- [0023] 이러한 신호 공간 정렬을 이용할 경우, 다운스트림 신호 하나와 업스트림 신호 하나를 하나의 디멘션에 같이 포함시키므로 안테나의 개수를 절반으로 줄일 수 있게 된다.
- [0024] 안테나의 개수가 제한되어 있다면, 신호 공간 정렬을 통해 적은 안테나 수로 다운스트림 및 업스트림 데이터를 보낼 수 있게 된다.
- [0025] 도 3은 본 발명의 일 실시예에 따라 각 디멘션별로 다운스트림 신호 및 업스트림 신호에 대해 신호 공간 정렬이 이루어진 일례를 표로 나타낸 도면이다.
- [0026] 신호 공간 정렬을 위해서는 다음의 수학식 1과 같은 조건이 필요하다.

수학식 1

$$\operatorname{col}(\mathbf{b}_{k,l}\mathbf{Gt}_{k,l}) = \operatorname{col}(\mathbf{b}_{k,l}\mathbf{H}_{k}\mathbf{p}_{k,l})$$

- [0027]
- [0028] 위 수학식에서 b, t는 중계기 수신필터 B 및 송신기 프리코더 T 매트릭스의 엘리먼트를 의미한다.
- [0029] 위의 조건을 만족하는 중계기의 수신필터 B, 송신기의 프리코더
- [0030] T 및 수신기의 프리코더 P가 결정되어야 한다.
- [0031] 이때, 중계기의 수신필터 B는 다음의 수학식 2와 같이 정의되며, 다음의 수학식 3과 같은 관계가 성립할 수 있다.

수학식 2

$$\mathbf{B} = \operatorname{pinv} \left[\mathbf{H}_1 \mathbf{P}_1, ..., \mathbf{H}_K \mathbf{P}_K \right]$$

[0032]

수학식 3

 $T = pinv(BG) = T_{tt}T_{tt}$

[0033]

- [0034] 위 수학식 3에서, Tu는 유닛 노멀 파트이고, Tu는 파워 로딩 파트이며, Pu는 임의로 결정되거나 아이덴터티 (Identity) 매트릭스로 설정하다.
- [0035] 위의 T, B를 대입하면, 다음의 수학식 4와 같이 유도될 수 있다.

수학식 4

$$\mathbf{T}_{D}\mathbf{\Lambda}\mathbf{D} + \mathbf{u} = \begin{bmatrix} t_{D,1,1}\lambda_{1,1}d_{1,1} + u_{1,1} \\ t_{D,1,2}\lambda_{1,2}d_{1,2} + u_{1,2} \\ \vdots \\ t_{D,k,L_k}\lambda_{k,L_k}d_{k,L_k} + u_{k,L_k} \\ t_{D,k+1,1}\lambda_{k+1,1}d_{k+1,1} + u_{k+1,1} \\ \vdots \\ t_{D,K,L_k}\lambda_{K,L_k}d_{K,L_k} + u_{K,L_k} \end{bmatrix}$$

$$\begin{split} \mathbf{T}_{D} &= \operatorname{diag}\left\{t_{D,1,1},...,t_{D,K,L_{k}}\right\} \\ \mathbf{D} &= \operatorname{diag}\left\{d_{1,1},...,d_{K,L_{k}}\right\} \\ \mathbf{\Lambda} &= \operatorname{diag}\left\{\lambda_{1,1},...,\lambda_{K,L_{k}}\right\} \end{split}$$

[0036]

$$\mathbf{T}_D = \mathbf{diag}\left\{t_{D,k,l}\right\}$$

이때. 파워 로딩 파트인 [0037]

 $\mathbf{T}_{\!\scriptscriptstyle D} = \mathrm{diag}\left\{t_{\scriptscriptstyle D,k,l}
ight\}$ 는 다음의 수학식 5와 같이 가상 SINR을 정의한 후 결정한다.

수학식 5

$$SINR_{k,l}^{1st} = \frac{\left| t_{D,k,l} \lambda_{k,l} \right|^2}{\sigma_1^2 \left| b_{k,l} \right|^2}$$

[0038]

- [0039] 이와 같이 가상 SINR을 설정한 후 가상 SINR이 모두 같아지도록 파워 로딩 파트인 Tn를 설정한다.
- $\sum_{\forall k,l} \left| t_{D,k,l} \right|^2 = P_{\mathbb{B}} \qquad \qquad \text{SINR}_{k,l}^{1\text{st}}, \ \forall k,l \qquad \qquad t_{D,k,l}, \ \forall k,l$ 이 모두 같아지도록 [0040] 결정하며, 이는 다음의 수학식 6과 같다.

수학식 6

$$t_{D,k,l} = \left[\left(\alpha \sum_{k,l} \frac{\left| b_{k,l} \right|^2}{\left| \lambda_{D,k,l} \right|^2} - \frac{P_M}{L_k} \right) / \left| \lambda_{D,k,l} \right|^2 \right]^+$$

$$\alpha = \left(P_{B} + \frac{P_{M}}{L_{k}} \sum_{k,l} \frac{1}{\left|\lambda_{k,l}\right|^{2}}\right) / \sum_{k,l} \frac{\left|b_{k,l}\right|^{2}}{\left|\lambda_{k,l}\right|^{2}},$$

[0041]

- [0042] 위 수학식 6을 이용하여 T_U 를 결정하면, 이를 이용하여 송신기 프리코더 T를 결정하고 수학식 3을 통해 중계기의 수신필터인 B를 결정한다.
- [0043] 도 2는 본 발명의 일 실시예에 따른 송수신기 설계 방법이 적용되는 양방향 중계기를 이용하는 방송 시스템에서 중게기가 송신기와 수신기에 신호를 전송하는 페이즈인 제2 페이즈를 도시한 도면이다.
- [0044] 도 2에서 채널 가역성을 사용할 경우 송신기와 중계기 링크 채널 및 중계기와 수신기 링크 채널은 각각 ${f G}^T \ {f H}^T$, 로 표시할 수 있다.
- [0045] 이때, 송신기가 중계기로부터 수신하는 신호는 다음의 수학식 7과 같이 표시되고, 수신기가 중계기로부터 수신 하는 신호는 다음의 수학식 8과 같이 표시될 수 있다.

수학식 7

수학식 8

$$\mathbf{y}_{B} = \mathbf{G}^{T} \mathbf{F} \mathbf{B} \Big(\mathbf{G} \mathbf{T} \mathbf{D} + \sum_{k=1}^{K} \mathbf{H}_{k} \mathbf{P}_{k} \mathbf{u}_{k} + \mathbf{n}_{R} \Big) + \mathbf{n}_{B}$$

$$\mathbf{y}_{k} = \mathbf{H}_{k}^{T} \mathbf{F} \mathbf{B} \Big(\mathbf{G} \mathbf{T} \mathbf{D} + \sum_{k=1}^{K} \mathbf{H}_{k} \mathbf{P}_{k} \mathbf{u}_{k} + \mathbf{n}_{R} \Big) + \mathbf{n}_{k}$$

[0047]

[0046]

- [0048] 도 2에서, J는 송신기의 프리코더이고, R은 수신기의 수신 필터이며, F는 중계기의 프리코더이다.
- [0049] 제2 페이즈에서, 중계기의 프리코더 F는 최소 SINR을 최대화하는 문제로 귀결될 수 있으며, 이는 다음의 수학식과 같이 표현될 수 있다.

수학식 9

 $\max_{\mathbf{F}} \min SINR_{k,l}^{dl}, SINR_{k,l}^{ul}$

s. t.
$$\operatorname{tr}\left(\mathbf{F}\mathbf{B}\left(\mathbf{G}\mathbf{T}\mathbf{T}^{H}\mathbf{G}^{H}+\mathbf{H}\mathbf{P}\mathbf{P}^{H}\mathbf{H}^{H}+\sigma_{1}^{2}\mathbf{I}_{N_{R}}\right)\mathbf{B}^{H}\mathbf{F}^{H}\right)\leq P_{R}$$

[0050]

[0051] 위 수학식 9를 도출하는 것은 매우 복잡한 방법으로서, 본 발명에서는 중계기의 프리코더를 다음의 수학식 10과 같이 설정하도록 한다.

수학식 10

$$\mathbf{F} = \mathbf{H}^+$$

[0052]

[0053] 또한, J와 R은 다음의 수학식 11과 같이 MMSE 수신기 방식에 의해 결정한다.

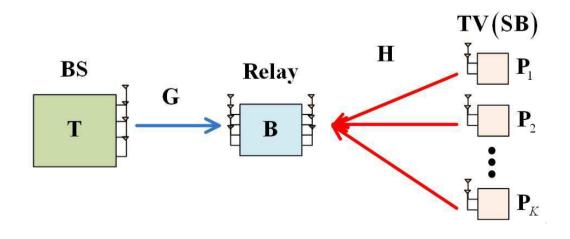
수학식 11

$$\mathbf{R}_{k} = \left(\mathbf{H}_{k}^{T}\mathbf{F}\mathbf{B}\mathbf{G}\sum_{k=1}^{K}\mathbf{T}_{k}\right)^{H}\left(\mathbf{H}_{k}^{T}\mathbf{F}\mathbf{B}\mathbf{G}\left(\sum_{k=1}^{K}\mathbf{T}_{k}\right)\left(\sum_{k=1}^{K}\mathbf{T}_{k}\right)^{H}\mathbf{G}^{H}\mathbf{B}^{H}\mathbf{F}^{H}\left(\mathbf{H}_{k}^{T}\right)^{H}$$

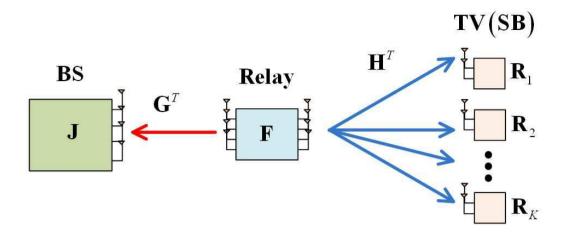
$$\cdots + \mathbf{H}_{k}^{T}\mathbf{F}\mathbf{B}\left(\sum_{k\neq k}\mathbf{H}_{k}\mathbf{P}_{k}^{T}\mathbf{P}_{k}^{H}\mathbf{H}_{k}^{H}\right)\mathbf{B}^{H}\mathbf{F}^{H}\left(\mathbf{H}_{k}^{T}\right)^{H} + \sigma_{1}^{2}\mathbf{H}_{k}^{T}\mathbf{F}\mathbf{B}\mathbf{B}^{H}\mathbf{F}^{H}\left(\mathbf{H}_{k}^{T}\right)^{H} + \sigma_{2}^{2}\mathbf{I}_{N_{M}}\right)$$

$$\mathbf{J} = \left(\mathbf{G}^{T}\mathbf{F}\mathbf{B}\mathbf{H}\mathbf{P}\right)^{H}$$

$$\cdots \left(\mathbf{G}^{T}\mathbf{F}\mathbf{B}\mathbf{H}\mathbf{P}\mathbf{P}^{H}\mathbf{H}^{H}\mathbf{B}^{H}\mathbf{F}^{H}\left(\mathbf{G}^{T}\right)^{H} + \sigma_{1}^{2}\mathbf{G}^{T}\mathbf{F}\mathbf{B}\mathbf{B}^{H}\mathbf{F}^{H}\left(\mathbf{G}^{T}\right)^{H} + \sigma_{2}^{2}\mathbf{I}_{N_{B}}\right)^{T}$$


[0054]

[0055]


이상과 같이 본 발명에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.

도면

도면1

도면2

도면3

Dimension	1	2	3	4	5	6
Downstream	d_1	d_2	d_3	d_4	d_5	d_6
Upstream	$u_{1,1}$	$u_{1,2}$	$u_{2,1}$	$u_{2,2}$	$u_{3,1}$	u _{3,2}